1.Laser Fusion Research Center, CAEP, P. O. Box 919 986, Mianyang 621900, China
2.The Sciences and Technology on Plasma Physics Laboratory, CAEP, Mianyang 621900, China
3.Department of Plasma Physics and Fusion Engineering, CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, Hefei 230026, China
4.The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
y-f-he@foxmail.com
zhaozongqing99@caep.ac.cn
Scan for full text
Yang-Fan He, Bin Sun, Ming-Jiang Ma, et al. Topology optimization of on-chip integrated laser-driven particle accelerator. [J]. Nuclear Science and Techniques 33(9):120(2022)
Yang-Fan He, Bin Sun, Ming-Jiang Ma, et al. Topology optimization of on-chip integrated laser-driven particle accelerator. [J]. Nuclear Science and Techniques 33(9):120(2022) DOI: 10.1007/s41365-022-01101-2.
Particle accelerators are indispensable tools in both science and industry. However, the size and cost of conventional RF accelerators limits the utility and scope of this technology. Recent research has shown that a dielectric laser accelerator (DLA) made of dielectric structures and driven at optical frequencies can generate particle beams with energies ranging from MeV to GeV at the tabletop level. To design DLA structures with a high acceleration gradient, we demonstrate topology optimization, which is a method used to optimize the material distribution in a specific area based on given load conditions, constraints, and performance indicators. To demonstrate the effectiveness of this approach, we propose two schemes and design several acceleration structures based on them. The optimization results demonstrate that the proposed method can be applied to structure optimization for on-chip integrated laser accelerators, producing manufacturable structures with significantly improved performance compared with previous size or shape optimization methods. These results provide new physical approaches to explore ultrafast dynamics in matter, with important implications for future laser particle accelerators based on photonic chips.
Laser-driven particle accelerationDielectric grating acceleratorInverse Smith-Purcell effectTopology optimization
B.W.J. McNeil, N.R. Thompson, X-ray free-electron lasers. Nature Photon 4, 814-821 (2010). doi: 10.1038/nphoton.2010.239http://doi.org/10.1038/nphoton.2010.239
Y. Zhang, W.C. Fang, X.X. Huang et al., Design, fabrication, and cold test of an S-band high-gradient accelerating structure for compact proton therapy facility. Nucl. Sci. Tech. 32, 38 (2021). doi: 10.1007/s41365-021-00869-zhttp://doi.org/10.1007/s41365-021-00869-z
S. V. Bulanov and V. S. Khoroshkov, Feasibility of using laser ion accelerators in proton therapy. Plasma Phys. Rep. 28, 453-456 (2002). doi: 10.1134/1.1478534http://doi.org/10.1134/1.1478534
W. Nan, B. Guo, C.J. Lin et al., First proof-of-principle experiment with the post-accelerated isotope separator on-line beam at BRIF: measurement of the angular distribution of 23Na + 40Ca elastic scattering. Nucl. Sci. Tech. 32, 53 (2021). doi: 10.1007/s41365-021-00889-9http://doi.org/10.1007/s41365-021-00889-9
E. L. Ginzton, W. W. Hansen, and W. R. Kennedy, A Linear Electron Accelerator. Rev. Sci. Instrum. 19, 89-108 (1948) doi: 10.1063/1.1741225http://doi.org/10.1063/1.1741225
Z.-Y. Ma, S.-J. Zhao, X.-M. Liu et al., High RF power tests of the first 1.3 GHz fundamental power coupler prototypes for the SHINE project. Nucl. Sci. Tech. 33, 10 (2022). doi: 10.1007/s41365-022-00984-5http://doi.org/10.1007/s41365-022-00984-5
C. Wang, J.H. Tan, X.X. Huang et al., Design optimization and cold RF test of a 2.6-cell cryogenic RF gun. Nucl. Sci. Tech. 32, 97 (2021). doi: 10.1007/s41365-021-00925-8http://doi.org/10.1007/s41365-021-00925-8
G.-R. Li, S.-X. Zheng, H.-J. Zeng et al., Design and test of an RF acceleration system loaded with magnetic alloy for the proton synchrotron of the Xi’an Proton Application Facility. Nucl. Sci. Tech. 29, 94 (2018). doi: 10.1007/s41365-018-0434-9http://doi.org/10.1007/s41365-018-0434-9
R.J. England, R.J. Noble, K. Bane et al., Dielectric laser accelerators. Rev. Mod. Phys. 86, 1337 (2014). doi: 10.1103/RevModPhys.86.1337http://doi.org/10.1103/RevModPhys.86.1337
J. Breuer and P. Hommelhoff, Laser-based acceleration of nonrelativistic electrons at a dielectric structure. Phys. Rev. Lett. 111, 134803 (2013). doi: 10.1103/PhysRevLett.111.134803http://doi.org/10.1103/PhysRevLett.111.134803
E.A. Peralta, K. Soong, R.J. England et al., Demonstration of electron acceleration in a laser-driven dielectric microstructure. Nature 503, 91-94 (2013). doi: 10.1038/nature12664http://doi.org/10.1038/nature12664
K.J. Leedle, R.F. Pease, R.L. Byer et al., Laser acceleration and deflection of 96.3 keV electrons with a silicon dielectric structure. Optica 2, 158-161 (2015) doi: 10.1364/OPTICA.2.000158http://doi.org/10.1364/OPTICA.2.000158
K.J. Leedle, R.F. Pease, R.L. Byer et al., Dielectric laser acceleration of sub-100 keV electrons with silicon dual-pillar grating structures. Optics Letters 40, 4344-4347 (2015) doi: 10.1364/OL.40.004344http://doi.org/10.1364/OL.40.004344
U. Niedermayer, T. Egenolf, O. Boine-Frankenheim et al., Alternating phase focusing for dielectric laser acceleration. Phys. Rev. Lett. 121, 214801 (2018) doi: 10.1103/PhysRevLett.121.214801http://doi.org/10.1103/PhysRevLett.121.214801
D.S. Black, K.J. Leedle, Y. Miao et al., Laser-driven electron lensing in silicon microstructures. Phys. Rev. Lett. 122, 104801 (2019) doi: 10.1103/PhysRevLett.122.104801http://doi.org/10.1103/PhysRevLett.122.104801
N. Schönenberger, A. Mittelbach, P. Yousefi et al., Generation and characterization of attosecond microbunched electron pulse trains via dielectric laser acceleration. Phys. Rev. Lett. 123, 264803 (2019) doi: 10.1103/PhysRevLett.123.264803http://doi.org/10.1103/PhysRevLett.123.264803
D.S. Black, U. Niedermayer, Y. Miao et al., Net acceleration and direct measurement of attosecond electron pulses in a silicon dielectric laser accelerator. Phys. Rev. Lett. 123, 264802 (2019) doi: 10.1103/PhysRevLett.123.264802http://doi.org/10.1103/PhysRevLett.123.264802
K.P. Wootton, J. McNeur and K. J. Leedle, Dielectric laser accelerators: Designs, experiments, and applications. Rev. Accelerator Sci. Technol. 09, 105-126 (2016) doi: 10.1142/S179362681630005Xhttp://doi.org/10.1142/S179362681630005X
K. Soong, R.L. Byer, E.R. Colby et al., Laser damage threshold measurements of optical materials for direct laser accelerators. AIP Conference Proceedings 1507, 511 (2012) doi: 10.1063/1.4773749http://doi.org/10.1063/1.4773749
R. Agustsson, E. Arab, A. Murokh et al., Measuring single-shot, picosecond optical damage threshold in Ge, Si, and sapphire with a 5.1-µm laser. Optical Materials Express 5, 2835-2842 (2015) doi: 10.1364/OME.5.002835http://doi.org/10.1364/OME.5.002835
D. Cesar, J. Maxson, P. Musumeci et al., Optical design for increased interaction length in a high gradient dielectric laser accelerator. Nucl. Instrum. Meth. A 909, 252-256 (2018) doi: 10.1016/j.nima.2018.01.012http://doi.org/10.1016/j.nima.2018.01.012
J. Breuer, J. McNeur, P. Hommelhoff, Dielectric laser acceleration of electrons in the vicinity of single and double grating structures—theory and simulations. J. Phys. B At. Mol. Opt. Phys. 47, 234004 (2014) doi: 10.1088/0953-4075/47/23/234004http://doi.org/10.1088/0953-4075/47/23/234004
T. Plettner, R.L. Byer, B. Montazeri, Electromagnetic forces in the vacuum region of laser-driven layered grating structures. J. Mod. Opt. 58, 1518 (2011) doi: 10.1080/09500340.2011.611914http://doi.org/10.1080/09500340.2011.611914
D.S. Black, Z.X. Zhao, K.J. Leedle et al., Operating modes of dual-grating dielectric laser accelerators. Phys. Rev. Accel. Beams 23, 114001 (2020) doi: 10.1103/PhysRevAccelBeams.23.114001http://doi.org/10.1103/PhysRevAccelBeams.23.114001
D. Cesar, S. Custodio, J. Maxson et al., High-field nonlinear optical response and phase control in a dielectric laser accelerator. Commun. Phys. 1, 46 (2018). doi: 10.1038/s42005-018-0047-yhttp://doi.org/10.1038/s42005-018-0047-y
T.W. Hughes, S. Tan, Z.X. Zhao et al., On-Chip Laser-Power Delivery System for Dielectric Laser Accelerators. Phys. Rev. Appl. 9, 054017 (2018). doi: 10.1103/PhysRevApplied.9.054017http://doi.org/10.1103/PhysRevApplied.9.054017
N.V Sapra, K.Y. Yang, D. Vercruysse et al., On-chip integrated laser-driven particle accelerator. Science 367, 79-83 (2020). doi: 10.1126/science.aay5734http://doi.org/10.1126/science.aay5734
https://www.laserphysics.nat.fau.eu/research/achip/https://www.laserphysics.nat.fau.eu/research/achip/
T. Plettner, P.P. Lu, R.L. Byer, Proposed few-optical cycle laser-driven particle accelerator structure. Phys. Rev. ST Accel. Beams 9, 111301 (2006) doi: 10.1103/PhysRevSTAB.9.111301http://doi.org/10.1103/PhysRevSTAB.9.111301
T. Hughes, G. Veronis, K.P. Wootton et al., Method for computationally efficient design of dielectric laser accelerator structures. Opt. Express 25, 15414-15427 (2017) doi: 10.1364/OE.25.015414http://doi.org/10.1364/OE.25.015414
C.M Lalau-Keraly, S. Bhargava, O.D Miller et al., Adjoint shape optimization applied to electromagnetic design. Opt. Express 21, 21693-21701 (2013). doi: 10.1364/OE.21.021693http://doi.org/10.1364/OE.21.021693
A. Michaels, E. Yablonovitch, Leveraging continuous material averaging for inverse electromagnetic design. Opt. Express 26, 31717-31737 (2018). doi: 10.1364/OE.26.031717http://doi.org/10.1364/OE.26.031717
K. Yee, Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media. IEEE T. Antennas Propagation 14, 302-307 (1966). doi: 10.1109/TAP.1966.1138693http://doi.org/10.1109/TAP.1966.1138693
R.C. Rumpf, Simple implementation of arbitrarily shaped total-field/scattered-field regions in finite-difference frequency-domain. Prog. Electromagnetics Research B, 36, 221-248, (2012) doi: 10.2528/PIERB11092006http://doi.org/10.2528/PIERB11092006
T.W. Hughes, I.A.D. Williamson, M. Minkov et al., Forward-mode differentiation of Maxwell’s equations. ACS Publications 6, 3010-3016 (2019). doi: 10.1021/acsphotonics.9b01238http://doi.org/10.1021/acsphotonics.9b01238
S.G. Johnson, Notes on perfectly matched layers (PMLs). arxiv: 2108.05348
M. Minkov, I.A.D. Williamson, L.C. Andreani et al., Inverse design of photonic crystals through automatic differentiation. ACS Photonics 7, 1729-1741 (2020). doi: 10.1021/acsphotonics.0c00327http://doi.org/10.1021/acsphotonics.0c00327
Autograd: Efficiently computes derivatives of numpy code. https://github.com/HIPS/autogradhttps://github.com/HIPS/autograd
D.P. Kingma, J. Ba, Adam: A method for stochastic optimization. arXiv:1412.6980
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution