1.Center for Transformative Science, Shanghaitech University, Shanghai 201210, China
2.School of Physical Science and Technology, Shanghaitech University, Shanghai 201210, China
3.Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
*jianghd@shanghaitech.edu.cn
Scan for full text
Jia-Dong Fan, Ya-Jun Tong, Yong-Gan Nie, et al. First commissioning results of the coherent scattering and imaging endstation at the Shanghai soft X-ray Free-Electron Laser facility. [J]. Nuclear Science and Techniques 33(9):114(2022)
Jia-Dong Fan, Ya-Jun Tong, Yong-Gan Nie, et al. First commissioning results of the coherent scattering and imaging endstation at the Shanghai soft X-ray Free-Electron Laser facility. [J]. Nuclear Science and Techniques 33(9):114(2022) DOI: 10.1007/s41365-022-01103-0.
The Shanghai soft X-ray Free-Electron Laser (SXFEL) user facility project started in 2016 and is expected to be open to users by 2022. It aims to deliver ultra-intense coherent femtosecond X-ray pulses to five endstations covering a range of 100 to 620 eV for ultrafast X-ray science. Two undulator lines are designed and constructed, based on different lasing modes: self-amplified spontaneous emission and echo-enabled harmonic generation. The coherent scattering and imaging (CSI) endstation is the first of five endstations to be commissioned online. It focuses on high-resolution single-shot imaging and the study of ultrafast dynamic processes using coherent forward scattering techniques. Both the single-shot holograms and coherent diffraction patterns were recorded and reconstructed for nanoscale imaging, indicating the excellent coherence and high peak power of the SXFEL and the possibility of "diffraction before destruction" experiments at the CSI endstation. In this study, we report the first commissioning results of the CSI endstation.
X-ray free electron laserCoherent diffraction imagingFourier transform holographySingle-shot imagingPhase retrieval
I. Robinson and R. Harder, Coherent X-ray diffraction imaging of strain at the nanoscale. Nat. Mater. 8, 291-298 (2009). doi: 10.1038/nmat2400http://doi.org/10.1038/nmat2400
H. Jiang, R. Xu, C.-C. Chen et al., Three-dimensional coherent X-ray diffraction imaging of molten iron in mantle olivine at nanoscale resolution. Phys. Rev. Lett. 110, 205501 (2013). doi: 10.1103/PhysRevLett.110.205501http://doi.org/10.1103/PhysRevLett.110.205501
X. Huang, J. Nelson, J. Kirz et al., Soft X-ray diffraction microscopy of a frozen hydrated yeast cell. Phys. Rev. Lett. 103, 198101 (2009). doi: 10.1103/PhysRevLett.103.198101http://doi.org/10.1103/PhysRevLett.103.198101
H. Jiang, C. Song, C.-C. Chen et al., Quantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopy. Proc. Natl. Acad. Sci. U.S.A. 107, 11234-11239 (2010). doi: 10.1073/pnas.100015610http://doi.org/10.1073/pnas.100015610
J. Nelson, X. Huang, J. Steinbrener et al., High-resolution x-ray diffraction microscopy of specifically labeled yeast cells. Proc. Natl. Acad. Sci. U.S.A. 107, 7235-7239 (2010). doi: 10.1073/pnas.0910874107http://doi.org/10.1073/pnas.0910874107
G. Schneider, P. Guttmann, S. Heim et al., Three-dimensional cellular ultrastructure resolved by X-ray microscopy. Nat. Methods 7, 985-987 (2010). doi: 10.1038/nmeth.1533http://doi.org/10.1038/nmeth.1533
M.F. Hantke, D. Hasse, F.R. Maia et al., High-throughput imaging of heterogeneous cell organelles with an X-ray laser. Nat. Photon. 8, 943-949 (2014). doi: 10.1038/nphoton.2014.270http://doi.org/10.1038/nphoton.2014.270
A. Sakdinawat and D. Attwood, Nanoscale X-ray imaging. Nat. Photon. 4, 840-848 (2010). doi: 10.1038/nphoton.2010.267http://doi.org/10.1038/nphoton.2010.267
J. Miao, P. Charalambous, J. Kirz et al., Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400, 342-344 (1999). doi: 10.1038/22498http://doi.org/10.1038/22498
J. Miao, T. Ishikawa, Q. Shen et al., Extending x-ray crystallography to allow the imaging of noncrystalline materials, cells, and single protein complexes. Annu. Rev. Phys. Chem. 59, 387-410 (2008). doi: 10.1146/annurev.physchem.59.032607.093642http://doi.org/10.1146/annurev.physchem.59.032607.093642
S. Marchesini, Invited article: A unified evaluation of iterative projection algorithms for phase retrieval. Rev. Sci. Instrum. 78, 011301 (2007). doi: 10.1063/1.2403783http://doi.org/10.1063/1.2403783
C. Pellegrini, A. Marinelli, and S. Reiche, The physics of x-ray free-electron lasers. Rev. Mod. Phys. 88, 015006 (2016). doi: 10.1103/RevModPhys.88.015006http://doi.org/10.1103/RevModPhys.88.015006
N. Huang, H. Deng, B. Liu et al., Features and futures of X-ray free-electron lasers. The Innov. 2, 100097 (2021). doi: 10.1016/j.xinn.2021.100097http://doi.org/10.1016/j.xinn.2021.100097
W.a. Ackermann, G. Asova, V. Ayvazyan et al., Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photon. 1, 336-342 (2007). doi: 10.1038/nphoton.2007.76http://doi.org/10.1038/nphoton.2007.76
P. Emma, R. Akre, J. Arthur et al., First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photon. 4, 641-647 (2010). doi: 10.1038/nphoton.2010.176http://doi.org/10.1038/nphoton.2010.176
E. Allaria, R. Appio, L. Badano et al., Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photon. 6, 699-704 (2012). doi: 10.1038/nphoton.2012.233http://doi.org/10.1038/nphoton.2012.233
T. Ishikawa, H. Aoyagi, T. Asaka et al., A compact X-ray free-electron laser emitting in the sub-ångström region. Nat. Photon. 6, 540-544 (2012). doi: 10.1038/nphoton.2012.141http://doi.org/10.1038/nphoton.2012.141
H.-S. Kang, C.-K. Min, H. Heo, et al., Hard X-ray free-electron laser with femtosecond-scale timing jitter. Nat. Photon. 11, 708-713 (2017). doi: 10.1038/s41566-017-0029-8http://doi.org/10.1038/s41566-017-0029-8
C.J. Milne, T. Schietinger, M. Aiba et al., SwissFEL: the Swiss X-ray free electron laser. Appl. Sci. 7, 720 (2017). doi: 10.3390/app7070720http://doi.org/10.3390/app7070720
W. Decking, S. Abeghyan, P. Abramian et al., A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator. Nat. Photon. 14, 391-397 (2020). doi: 10.1038/s41566-020-0607-zhttp://doi.org/10.1038/s41566-020-0607-z
J. Stohr, Linac coherent light source II (LCLS-II) conceptual design report. United States. (2011). doi: 10.2172/1029479http://doi.org/10.2172/1029479
T. Liu, X. Dong, and C. Feng, Start-to-end simulations of the reflection hard X-ray self-seeding at the SHINE project. In: Proceedings of the 39th International Free Electron Laser Conference—FEL 2019 254-257 (2019). doi: 10.18429/JACoW-FEL2019-TUP087http://doi.org/10.18429/JACoW-FEL2019-TUP087
I.A. Vartanyants and O.M. Yefanov, Coherent X-ray Diffraction Imaging of Nanostructures. arXiv preprint arXiv:1304.5335 (2013). doi: 10.48550/arXiv.1304.5335http://doi.org/10.48550/arXiv.1304.5335
C. Feng and H.-X. Deng, Review of fully coherent free-electron lasers. Nucl. Sci. Tech. 29, 1-15 (2018). doi: 10.1007/s41365-018-0490-1http://doi.org/10.1007/s41365-018-0490-1
B. Liu, C. Feng, D. Gu et al., The SXFEL Upgrade: From Test Facility to User Facility. Appl. Sci. 12, 176 (2022). doi: 10.3390/app12010176http://doi.org/10.3390/app12010176
Z. Zhao, S. Chen, L. Yu et al., Shanghai soft X-ray free electron laser test facility. Proceedings of IPAC2011, San Sebastián, Spain 3011-3013 (2011).
Z. Zhao, D. Wang, Q. Gu et al., SXFEL: A soft X-ray free electron laser in China. Synchrotron Radiat. News 30, 29-33 (2017). doi: 10.1080/08940886.2017.1386997http://doi.org/10.1080/08940886.2017.1386997
R.J. Bean, A. Aquila, L. Samoylova et al., Design of the mirror optical systems for coherent diffractive imaging at the SPB/SFX instrument of the European XFEL. J. Opt. 18, 074011 (2016). doi: 10.1088/2040-8978/18/7/074011http://doi.org/10.1088/2040-8978/18/7/074011
D. Nam, C. Kim, Y. Kim et al., Fixed target single-shot imaging of nanostructures using thin solid membranes at SACLA. J. Phys. B: At. Mol. Opt. Phys. 49, 034008 (2016). doi: 10.1088/0953-4075/49/3/034008http://doi.org/10.1088/0953-4075/49/3/034008
J. Bielecki, M.F. Hantke, B.J. Daurer et al., Electrospray sample injection for single-particle imaging with X-ray lasers. Sci. Adv. 5, eaav8801 (2019). doi: 10.1126/sciadv.aav8801http://doi.org/10.1126/sciadv.aav8801
C. Behrens, F.-J. Decker, Y. Ding et al., Few-femtosecond time-resolved measurements of X-ray free-electron lasers. Nat. Commun. 5, 1-7 (2014). doi: 10.1038/ncomms4762http://doi.org/10.1038/ncomms4762
L. Zeng, C. Feng, D. Gu et al., Online single-shot characterization of ultrafast pulses from high-gain free-electron lasers. Fundamental Research (2022). doi: 10.1016/j.fmre.2022.01.027http://doi.org/10.1016/j.fmre.2022.01.027
C. Feng, T. Liu, S. Chen et al., Coherent and ultrashort soft x-ray pulses from echo-enabled harmonic cascade free-electron lasers. Optica 9, 785-791 (2022). doi: 10.1364/OPTICA.466064http://doi.org/10.1364/OPTICA.466064
H.N. Chapman, A. Barty, M.J. Bogan et al., Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nat. Phys. 2, 839-843 (2006). doi: 10.1038/nphys461http://doi.org/10.1038/nphys461
X. Huang, J. Nelson, J. Steinbrener et al., Incorrect support and missing center tolerances of phasing algorithms. Opt. Express 18, 26441-26449 (2010). doi: 10.1364/OE.18.026441http://doi.org/10.1364/OE.18.026441
Y. Takahashi, A. Suzuki, N. Zettsu et al., Coherent diffraction imaging analysis of shape-controlled nanoparticles with focused hard X-ray free-electron laser pulses. Nano Lett. 13, 6028-6032 (2013). doi: 10.1021/nl403247xhttp://doi.org/10.1021/nl403247x
H.N. Chapman, A. Barty, S. Marchesini et al., High-resolution ab initio three-dimensional x-ray diffraction microscopy. J. Opt. Soc. Am. A 23, 1179-1200 (2006). doi: 10.1364/JOSAA.23.001179http://doi.org/10.1364/JOSAA.23.001179
D. Shapiro, P. Thibault, T. Beetz et al., Biological imaging by soft x-ray diffraction microscopy. Proc. Natl. Acad. Sci. U.S.A. 102, 15343-15346 (2005). doi: 10.1073/pnas.0503305102http://doi.org/10.1073/pnas.0503305102
F.J. Bock and S.W. Tait, Mitochondria as multifaceted regulators of cell death. Nat. Rev. Mol. Cell Biol. 21, 85-100 (2020). doi: 10.1038/s41580-019-0173-8http://doi.org/10.1038/s41580-019-0173-8
D. Pan, J. Fan, Z. Nie et al., Quantitative analysis of the effect of radiation on mitochondria structure using coherent diffraction imaging with a clustering algorithm. IUCrJ 9, 223-230 (2022). doi: 10.1107/S2052252521012963http://doi.org/10.1107/S2052252521012963
R. Neutze, R. Wouts, D. Van der Spoel et al., Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752-757 (2000). doi: 10.1038/35021099http://doi.org/10.1038/35021099
M.M. Seibert, T. Ekeberg, F.R. Maia et al., Single mimivirus particles intercepted and imaged with an X-ray laser. Nature 470, 78-81 (2011). doi: 10.1038/nature09748http://doi.org/10.1038/nature09748
T. Kimura, Y. Joti, A. Shibuya et al., Imaging live cell in micro-liquid enclosure by X-ray laser diffraction. Nat. Commun. 5, 1-7 (2014). doi: 10.1038/ncomms4052http://doi.org/10.1038/ncomms4052
G. Van Der Schot, M. Svenda, F.R. Maia et al., Imaging single cells in a beam of live cyanobacteria with an X-ray laser. Nat. Commun. 6, 1-9 (2015). doi: 10.1038/ncomms6704http://doi.org/10.1038/ncomms6704
M. Rose, T. Senkbeil, A.R. von Gundlach et al., Quantitative ptychographic bio-imaging in the water window. Opt. Express 26, 1237-1254 (2018). doi: 10.1364/OE.26.001237http://doi.org/10.1364/OE.26.001237
M. Beckers, T. Senkbeil, T. Gorniak et al., Chemical contrast in soft x-ray ptychography. Phys. Rev. Lett. 107, 208101 (2011). doi: 10.1103/PhysRevLett.107.208101http://doi.org/10.1103/PhysRevLett.107.208101
X. Huang, H. Miao, J. Steinbrener et al., Signal-to-noise and radiation exposure considerations in conventional and diffraction X-ray microscopy. Opt. Express 17, 13541-13553 (2009). doi: 10.1364/OE.17.013541http://doi.org/10.1364/OE.17.013541
I. McNulty, J. Kirz, C. Jacobsen et al., High-resolution imaging by Fourier transform X-ray holography. Science 256, 1009-1012 (1992). doi: 10.1126/science.256.5059.1009http://doi.org/10.1126/science.256.5059.1009
S. Eisebitt, J. Lüning, W. Schlotter et al., Lensless imaging of magnetic nanostructures by X-ray spectro-holography. Nature 432, 885-888 (2004). doi: 10.1038/nature03139http://doi.org/10.1038/nature03139
C. von Korff Schmising, B. Pfau, M. Schneider et al., Imaging ultrafast demagnetization dynamics after a spatially localized optical excitation. Phys. Rev. Lett. 112, 217203 (2014). doi: 10.1103/PhysRevLett.112.217203http://doi.org/10.1103/PhysRevLett.112.217203
W. Schlotter, R. Rick, K. Chen et al., Multiple reference Fourier transform holography with soft x rays. Appl. Phys. Lett. 89, 163112 (2006). doi: 10.1063/1.2364259http://doi.org/10.1063/1.2364259
Z. Wang, C. Feng, Q. Gu et al., Generation of double pulses at the Shanghai soft X-ray free electron laser facility. Nucl. Sci. Tech. 28, 1-6 (2017). doi: 10.1007/s41365-017-0188-9http://doi.org/10.1007/s41365-017-0188-9
C. Song, R. Bergstrom, D. Ramunno-Johnson et al., Nanoscale imaging of buried structures with elemental specificity using resonant x-ray diffraction microscopy. Phys. Rev. Lett. 100, 025504 (2008). doi: 10.1103/PhysRevLett.100.025504http://doi.org/10.1103/PhysRevLett.100.025504
A. Tripathi, J. Mohanty, S.H. Dietze et al., Dichroic coherent diffractive imaging. Proc. Natl. Acad. Sci. U.S.A. 108, 13393-13398 (2011). doi: 10.1073/pnas.1104304108http://doi.org/10.1073/pnas.1104304108
F. Büttner, B. Pfau, M. Böttcher et al., Observation of fluctuation-mediated picosecond nucleation of a topological phase. Nat. Mater. 20, 30-37 (2021). doi: 10.1038/s41563-020-00807-1http://doi.org/10.1038/s41563-020-00807-1
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution