1.College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
dz1834029@smail.nju.edu.cn
sunan@nju.edu.cn
Scan for full text
Hong Zhang, Jun-Zhou Li, Rui Hou, et al. Design and development of an ACCT for the Shanghai Advanced Proton Therapy Facility. [J]. Nuclear Science and Techniques 33(10):126(2022)
Hong Zhang, Jun-Zhou Li, Rui Hou, et al. Design and development of an ACCT for the Shanghai Advanced Proton Therapy Facility. [J]. Nuclear Science and Techniques 33(10):126(2022) DOI: 10.1007/s41365-022-01106-x.
The Shanghai Advanced Proton Therapy Facility is a proton cancer treatment device designed and built by the Shanghai Institute of Applied Physics at the Chinese Academy of Sciences. The accelerator part comprises a proton linear accelerator (linac) injector and a circular synchrotron. An alternating current current transformer (ACCT) is used for non-intercepting beam current measurement at the drift tube linac exit. According to the beam characteristics, the ACCT is required to complete real-time beam current and pulse width measurements at currents of 3-30 mA, frequencies of 1-10 Hz, and pulse widths of 40-400 μs. In this paper, we report the design and development of an ACCT. The designed ACCT was simulated using CST Microwave Studio, and calibrated using an oscilloscope and signal generator. Variations in the output signal of the ACCT were investigated as a function of ceramic gap size, number of coil turns, and resistance. According to the simulation and experimental results, the optimal number of coil turns was found to be 30. In addition, a low-pass filter was adopted to filter the noise introduced during long-distance signal transmission using a coaxial cable with the length of 20 m. The calibration results show that the corresponding rise time of the ACCT is 800 ns with the sensitivity of 8.2 V/A and a droop of less than 1%, meeting the design requirements.
Beam current monitorsACCTParticle beam diagnostics
B. Qin, X. Liu, Q.S. Chen et al., Design and development of the beamline for a proton therapy system. Nucl. Sci. Tech. 32(12),138 (2021). doi: 10.1007/s41365-021-00975-yhttp://doi.org/10.1007/s41365-021-00975-y.
W.C. Fang, X.X. Huang, J.H. Tan et al., Proton linac-based therapy facility for ultra-high dose rate (FLASH) treatment. Nucl. Sci. Tech. 32(4), 34 (2021). doi: 10.1007/s41365-021-00872-4http://doi.org/10.1007/s41365-021-00872-4.
Y. Zhang, W.C Fang, X.X. Huang et al., Design, fabrication, and cold test of S-band high-gradient accelerating structure for compact proton therapy facility. Nucl. Sci. Tech. 32(4), 38 (2021) doi: 10.1007/s41365-021-00869-zhttp://doi.org/10.1007/s41365-021-00869-z.
Y. Zhang, W.C. Fang, X.X. Huang et al., Radio frequency conditioning of an S-band accelerating structure prototype for compact proton therapy facility. Nucl. Sci. Tech. 32(6):64(2021) doi: 10.1007/s41365-021-00891-1http://doi.org/10.1007/s41365-021-00891-1.
J. Wu, H. W. Du, S. Xue et al., Gantry optimization of the Shanghai Advanced Proton Therapy facility. Nucl. Sci. Tech. 26(4):040201(2015). doi: 10.13538/j.1001-8042/nst.26.040201http://doi.org/10.13538/j.1001-8042/nst.26.040201
Y.H. Yang, M.Z. Zhang, D.M. Li, Simulation study of slow extraction for the Shanghai Advanced Proton Therapy facility. Nucl. Sci. Tech. 28(9),120(2017). doi: 10.1007/s41365-017-0273-0http://doi.org/10.1007/s41365-017-0273-0
B.Q. Zhao, M.H. Zhao, M. Liu et al., The front-end electronics design of dose monitors for beam delivery system of Shanghai Advanced Proton Therapy Facility. Nucl. Sci. Tech. 28(6), 83 (2017). doi: 10.1007/s41365-017-0230-yhttp://doi.org/10.1007/s41365-017-0230-y
C.H. Miao, M. Liu, C.X. Yin et al., Precise magnetic field control of the scanning magnets for the APTRON beam delivery system. Nucl. Sci. Tech. 28(12), 172 (2017) doi: 10.1007/s41365-017-0324-6http://doi.org/10.1007/s41365-017-0324-6
J. Qiao, X.C. Xie, D.M. Li et al., Physical design and multi-particle simulations of a compact IH-DTL with KONUS beam dynamics for proton therapy. Nucl. Sci. Tech. 31(7), 64(2020) doi: 10.1007/s41365-020-00773-yhttp://doi.org/10.1007/s41365-020-00773-y.
K.P. Nesteruk, M. Auger, S. Braccini et al., A system for online beam emittance measurements and proton beam characterization. JINST 13, P01011 (2018). doi: 10.1088/1748-0221/13/01/P01011http://doi.org/10.1088/1748-0221/13/01/P01011
A. Shemyakin, J.P. Carneiro, B. Hanna et al., Experimental study of beam dynamics in the PIP-II MEBT prototype. arXiv:1808.08283 (2018).
P. Strehl. Beam instrumentation and diagnostics, volume 120. (Springer, 2006).
P. Forck, Lecture notes on beam instrumentation and diagnostics. Joint Universities Accelerator School (JUAS 2010).
F. Yan, H.P. Geng, C. Meng et al., Commissioning experiences with the Spoke-based CW superconducting proton linac. Nucl. Sci. Tech. 32(10), 105 (2021). doi: 10.1007/s41365-021-00950-7http://doi.org/10.1007/s41365-021-00950-7.
W. Zhou, B.G. Sun, P. Lu et al., An active-passive beam current transformer. Nucl. Sci. Tech. 19(2), 70-73(2008). doi: 10.1016/S1001-8042(08)60025-1http://doi.org/10.1016/S1001-8042(08)60025-1
R. Oesterle, P.G. Jorge, V. Grilj et al., Implementation and validation of a beam-current transformer on a medical pulsed electron beam LINAC for FLASH-RT beam monitoring. J. Appl. Clin. Med. Phys. 22(11), 165-171 (2021). doi: 10.1002/acm2.13433http://doi.org/10.1002/acm2.13433
H. Bayle, O. Delferrière, R. Gobin et al., Effective shielding to measure beam current from an ion source. Rev. Sci. Instrum. 85, 02A713 (2014). doi: 10.1063/1.4829736http://doi.org/10.1063/1.4829736
R.C. Webber, Charged particle beam current monitoring tutorial. AIP Conference Proceedings CONF−9410219. AIP, 333(1), 3-23(1995). doi: 10.1063/1.48014http://doi.org/10.1063/1.48014
BERGOZ Instrumentation, https://www.bergoz.com/products/acct/https://www.bergoz.com/products/acct/
J.B. Sharp, The induction type beam monitor for the PS: Hereward transformer (No. MPS-Int-CO-62-15). (1962).
K. Battes, C. Day, V. Hauer et al., Outgassing behavior of different high-temperature resistant polymers. J. Vac. Sci. Technol. A 36(2), 021602 (2018). doi: 10.1116/1.5001243http://doi.org/10.1116/1.5001243
I. Gouzman, E. Grossman, R. Verker, Advances in polyimide-based materials for space applications. Adv. Mater. 31, 1807738 (2019). doi: 10.1002/adma.201807738http://doi.org/10.1002/adma.201807738
S.G. Sammartano, Outgassing rates of PEEK, Kapton® and Vespel® polymers, Degree Thesis (2020).
R. Cooper, D. Ferguson, D.P. Engelhart et al., Effects of radiation damage on polyimide resistivity. J. Spacecraft Rockets 54, 343-348 (2017). doi: 10.2514/1.A33541http://doi.org/10.2514/1.A33541
D. Severin, E. Balanzat, W. Ensinger et al., Outgassing and degradation of polyimide induced by swift heavy ion irradiation at cryogenic temperature. J. Appl. Phys. 108, 024901 (2010) doi: 10.1063/1.3457846http://doi.org/10.1063/1.3457846
D.D. Ju, C.Y. Sun, H. Wang et al., Synergistic effect of proton irradiation and strain on the mechanical properties of polyimide fibers. RSC Advances 10, 39572-39579 (2020). doi: 10.1039/D0RA07039Dhttp://doi.org/10.1039/D0RA07039D
0
Views
3
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution