1.Department of Engineering Physics, Tsinghua University, Beijing 100084, China
2.Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084, China
3.State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Xi’an 710024, China
4.State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
tang.xuh@tsinghua.edu.cn
Scan for full text
Bai-Chuan Wang, Meng-Tong Qiu, Wei Chen, et al. Machine learning-based analyses for total ionizing dose effects in bipolar junction transistors. [J]. Nuclear Science and Techniques 33(10):131(2022)
Bai-Chuan Wang, Meng-Tong Qiu, Wei Chen, et al. Machine learning-based analyses for total ionizing dose effects in bipolar junction transistors. [J]. Nuclear Science and Techniques 33(10):131(2022) DOI: 10.1007/s41365-022-01107-w.
Machine learning methods have proven to be powerful in various research fields. In this paper, we show that research on radiation effects could benefit from such methods and present a machine learning-based scientific discovery approach. The total ionizing dose (TID) effects usually cause gain degradation of bipolar junction transistors (BJTs), leading to functional failures of bipolar integrated circuits. Currently, many experiments of TID effects on BJTs have been conducted at different laboratories worldwide, producing a large amount of experimental data, which provides a wealth of information. However, it is difficult to utilize these data effectively. In this study, we proposed a new artificial neural network (ANN) approach to analyze the experimental data of TID effects on BJTs. An ANN model was built and trained using data collected from different experiments. The results indicate that the proposed ANN model has advantages in capturing nonlinear correlations and predicting the data. The trained ANN model suggests that the TID hardness of a BJT tends to increase with base current ,I,B0,. A possible cause for this finding was analyzed and confirmed through irradiation experiments.
Total ionizing dose effectsBipolar junction transistorArtificial neural networkMachine learningRadiation effects
R. Li, C. Wang, W. Chen et al., Synergistic effects of TID and ATREE in vertical NPN bipolar transistor. IEEE T. Nucl. Sci. 66, 1566-1573 (2019). doi: 10.1109/TNS.2019.2909690http://doi.org/10.1109/TNS.2019.2909690
X. Li, J. Yang, D.M. Fleetwood et al., Hydrogen soaking, displacement damage effects, and charge yield in gated lateral bipolar junction transistors. IEEE T. Nucl. Sci. 65, 1271-1276 (2018). doi: 10.1109/TNS.2018.2837032http://doi.org/10.1109/TNS.2018.2837032
R.L. Pease, R.D. Schrimpf, D.M. Fleetwood, ELDRS in bipolar linear circuits: A review. IEEE T. Nucl. Sci. 56, 1894-1908 (2009). doi: 10.1109/TNS.2008.2011485http://doi.org/10.1109/TNS.2008.2011485
D.M. Fleetwood, Total ionizing dose effects in MOS and low-dose-rate-sensitive linear-bipolar devices. IEEE T. Nucl. Sci. 60, 1706-1730 (2013). doi: 10.1109/TNS.2013.2259260http://doi.org/10.1109/TNS.2013.2259260
G.I. Zebrev, A.S. Petrov, R.G. Useinov et al., Simulation of bipolar transistor degradation at various dose rates and electrical modes for high dose conditions. IEEE T. Nucl. Sci. 61, 1785-1790 (2014). doi: 10.1109/TNS.2014.2315672http://doi.org/10.1109/TNS.2014.2315672
L. Li, X. Chen, Y. Jian et al., Modeling the ionization damage on excess base current in pnp BJTs for circuit-level simulation. IEEE T. Nucl. Sci. 68, 2220-2231 (2021).
S.Y. Chang, S.S. Yang, X. Wen et al. Experimental study on the total ionizing dose effects of nonvolatile RRAM. Nucl. Tech. 43(12), 120502 (2020). doi: 10.11889/j.0253-3219.2020.hjs.43.120502http://doi.org/10.11889/j.0253-3219.2020.hjs.43.120502. (in Chinese)
P. Wu, L. Wen, Z. Xu et al., Synergistic effects of total ionizing dose and radiated electromagnetic interference on analog-to-digital converter. Nucl. Sci. Tech. 33, 39 (2022). doi: 10.1007/s41365-022-01017-xhttp://doi.org/10.1007/s41365-022-01017-x
X.Y. Zhang, Q. Guo, Y.D. Li et al., Total ionizing dose and synergistic effects of magnetoresistive random access memory. Nucl. Sci. Tech. 29, 111 (2018). doi: 10.1007/s41365-018-0451-8http://doi.org/10.1007/s41365-018-0451-8
Y.N. Liu, Y.P. Yang, F.G. Chen et al., Radiation effect sensitive peripheral of 180 nm CMOS microprocessor and probabilistic model analysis of its damage dose. Nucl. Tech. 44(03), 030502 (2021). doi: 10.11889/j.0253-3219.2021.hjs.44.030502http://doi.org/10.11889/j.0253-3219.2021.hjs.44.030502. (in Chinese)
G. Eraslan, Z. Avsec, J. Gagneur et al., Deep learning: new computational modelling techniques for genomics. Nat. Rev. Genet. 20, 389-403 (2019). doi: 10.1038/s41576-019-0122-6http://doi.org/10.1038/s41576-019-0122-6
Y. Li, Y. Xu, M. Jiang et al., Self-learning perfect optical chirality via a deep neural network. Phys. Rev. Lett. 123, 213902 (2019). doi: 10.1103/PhysRevLett.123.213902http://doi.org/10.1103/PhysRevLett.123.213902
J.M. Stokes, K. Yang, K. Swanson et al., A deep learning approach to antibiotic discovery. Cell. 180, 688-702 (2020). doi: 10.1016/j.cell.2020.01.021http://doi.org/10.1016/j.cell.2020.01.021
D. Visaria, A. Jain, Machine-learning-assisted space-transformation accelerates discovery of high thermal conductivity alloys. Appl. Phys. Lett. 117, 202107 (2020). doi: 10.1063/5.0028241http://doi.org/10.1063/5.0028241
K.T. Butler, D.W. Davies, H. Cartwright et al., Machine learning for molecular and materials science. Nature 559, 547-555 (2018). doi: 10.1038/s41586-018-0337-2http://doi.org/10.1038/s41586-018-0337-2
J. Li, H. Zhang, J.Z.Y. Chen, Structural prediction and inverse design by a strongly correlated neural network. Phys. Rev. Lett. 123, 108002 (2019). doi: 10.1103/PhysRevLett.123.108002http://doi.org/10.1103/PhysRevLett.123.108002
O. Sharir, Y. Levine, N. Wies et al., Deep autoregressive models for the efficient variational simulation of many-body quantum systems. Phys. Rev. Lett. 124, 020503 (2020). doi: 10.1103/PhysRevLett.124.020503http://doi.org/10.1103/PhysRevLett.124.020503
M.J. Hartmann, G. Carleo, Neural-network approach to dissipative quantum many-body dynamics. Phys. Rev. Lett. 122, 250502 (2019). doi: 10.1103/PhysRevLett.122.250502http://doi.org/10.1103/PhysRevLett.122.250502
A. Boehnlein, M. Diefenthaler, C. Fanelli et al., Machine learning in nuclear physics., arXiv preprint arXiv:2112.02309 (2021).
S. Akkoyun, Estimation of fusion reaction cross-sections by artificial neural networks. Nucl. Instrum. Meth. B 462, 51-54 (2020). doi: 10.1016/j.nimb.2019.11.014http://doi.org/10.1016/j.nimb.2019.11.014
A.E. Lovell, A.T. Mohan, P. Talou, Quantifying uncertainties on fission fragment mass yields with mixture density networks. J. Phys. G Nucl. Particle Phys. 47, 114001 (2020). doi: 10.1088/1361-6471/ab9f58http://doi.org/10.1088/1361-6471/ab9f58
Z. Gao, Y. Wang, H. Lü et al., Machine learning the nuclear mass. Nucl. Sci. Tech. 32, 109 (2021). doi: 10.1007/s41365-021-00956-1http://doi.org/10.1007/s41365-021-00956-1
E. Doucet, T. Brown, P. Chowdhury et al., Machine learning n/γ discrimination in CLYC scintillators. Nucl. Instrum. Meth. A 954, 161201 (2020). doi: 10.1016/j.nima.2018.09.036http://doi.org/10.1016/j.nima.2018.09.036
Z. Qian, V. Belavin, V. Bokov et al., Vertex and energy reconstruction in JUNO with machine learning methods. Nucl. Instrum. Meth. A 1010, 165527 (2021). doi: 10.1016/j.nima.2021.165527http://doi.org/10.1016/j.nima.2021.165527
Z.H. Wu, J.J. Bai, D.D. Zhang et al., Statistical analysis of helium bubbles in transmission electron microscopy images based on machine learning method. Nucl. Sci. Tech. 32, 54 (2021). doi: 10.1007/s41365-021-00886-yhttp://doi.org/10.1007/s41365-021-00886-y
Y. Zou, Q. Xing, B. Wang et al., Application of the asynchronous advantage actor-critic machine learning algorithm to real-time accelerator tuning. Nucl. Sci. Tech. 30, 158 (2019). doi: 10.1007/s41365-019-0668-1http://doi.org/10.1007/s41365-019-0668-1
Y. Yu, G. Liu, W. Xu et al., Research on tune feedback of the Hefei Light Source II based on machine learning. Nucl. Sci. Tech. 33, 28 (2022). doi: 10.1007/s41365-022-01018-whttp://doi.org/10.1007/s41365-022-01018-w
C.E. Romano, L.A. Bernstein, T. Bailey et al., Proceedings of the Workshop for Applied Nuclear Data: WANDA2020. Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States) (2020).
D. Neudecker, O. Cabellos, A.R. Clark et al., Informing nuclear physics via machine learning methods with differential and integral experiments. Phys. Rev. C 104, 34611 (2021).
S.C. Leemann, S. Liu, A. Hexemer et al., Demonstration of machine learning-based model-independent stabilization of source properties in synchrotron light sources. Phys. Rev. Lett. 123, 194801 (2019). doi: 10.1103/PhysRevLett.123.194801http://doi.org/10.1103/PhysRevLett.123.194801
Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature. 521, 436-444 (2015). doi: 10.1038/nature14539http://doi.org/10.1038/nature14539
K.F. Galloway, R.L. Pease, R.D. Schrimpf et al., From displacement damage to ELDRS: Fifty years of bipolar transistor radiation effects at the NSREC. IEEE T. Nucl. Sci. 60, 1731-1739 (2013). doi: 10.1109/TNS.2013.2244615http://doi.org/10.1109/TNS.2013.2244615
J. Boch, F. Saigne, A.D. Touboul et al., Dose rate effects in bipolar oxides: Competition between trap filling and recombination. Appl. Phys. Lett. 88, 232113 (2006). doi: 10.1063/1.2210293http://doi.org/10.1063/1.2210293
C. Wang, W. Chen, X. Jin et al., Dependence on base width and doping concentration of current degradation in gate-controlled lateral PNP bipolar transistors exposed to reactor neutrons and gamma rays. Energy Procedia 127, 110-119 (2017). doi: 10.1016/j.egypro.2017.08.119http://doi.org/10.1016/j.egypro.2017.08.119
D.M. Schmidt, D.M. Fleetwood, R.D. Schrimpf et al., Comparison of ionizing-radiation-induced gain degradation in lateral, substrate, and vertical PNP BJTs. IEEE T. Nucl. Sci. 42, 1541-1549 (1995). doi: 10.1109/23.488748http://doi.org/10.1109/23.488748
J. Boch, F. Saigne, T. Maurel et al., Dose and dose rate effects on NPN bipolar junction transistors irradiated at high temperature. RADECS 2001. pp. 357-362 (2001).
S.L. Kosier, R.D. Schrimpf, R.N. Nowlin et al., Charge separation for bipolar transistors. IEEE T. Nucl. Sci. 40, 1276-1285 (1993). doi: 10.1109/23.273541http://doi.org/10.1109/23.273541
S.R. Kulkarni, R. Damle, 60Co Gamma-ray induced gain degradation in bipolar junction transistors. Indian Journal of Physics. 85, 391-400 (2011).
P. Zhang, X. Wu, Q. Yi et al., A comparison of the effects of cobalt-60 γ ray irradiation on DPSA bipolar transistors at high and low injection levels. Microelectron. Reliab. 71, 86-90 (2017). doi: 10.1016/j.microrel.2017.02.015http://doi.org/10.1016/j.microrel.2017.02.015
J.Y. Zhao, J.Q. Yang, L. Dong et al., Hydrogen soaking irradiation acceleration method: application to and damage mechanism analysis on 3DG111 transistors. Acta Phys. Sin. 68, 068501 (2019). doi: 10.7498/aps.68.20181992http://doi.org/10.7498/aps.68.20181992 (in Chinese)
O.M. Lawal, S. Liu, Z. Li et al., Experimental studies of collector-emitter voltage bias influence on the total ionization dose effects in NPN Si BJTs. Superlattice. Microst. 122, 194-202 (2018). doi: 10.1016/j.spmi.2018.08.008http://doi.org/10.1016/j.spmi.2018.08.008
J.Q. Yang, L. Dong, C.M. Liu et al., Impact of nitride passivation layer on ionizing irradiation damage on LPNP bipolar transistors. Acta Phys. Sin. 67, 168501 (2018). doi: 10.7498/aps.67.20172215http://doi.org/10.7498/aps.67.20172215 (in Chinese)
X. Li, L. Dong, J. Yang et al., Impact of passivation layers on irradiation response of PNP transistors under different dose rates. IEEE Access. 5, 22194-22198 (2017). doi: 10.1109/ACCESS.2017.2756701http://doi.org/10.1109/ACCESS.2017.2756701
Y. Pan, X. Nie, Z. Li et al., Data-driven vehicle modeling of longitudinal dynamics based on a multibody model and deep neural networks. Measurement 180, 109541 (2021). doi: 10.1016/j.measurement.2021.109541http://doi.org/10.1016/j.measurement.2021.109541
J. Ma, S. Dong, G. Chen et al., A data-driven normal contact force model based on artificial neural network for complex contacting surfaces. Mech. Syst. Signal Pr. 156, 107612 (2021). doi: 10.1016/j.ymssp.2021.107612http://doi.org/10.1016/j.ymssp.2021.107612
Keras Documentation. https://keras.iohttps://keras.io Accessed 22 September 2022.
V. Nair, G. Hinton, Rectified linear units improve restricted boltzmann machines. 27th International Conference on Machine Learning (ICML-10) (2010).
G.E. Hinton, N. Srivastava, A. Krizhevsky et al., Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580 (2012).
D. Kingma, J. Ba, Adam: A Method for Stochastic Optimization. Computer Science (2014).
D. Masters, C. Luschi, Revisiting small batch training for deep neural networks. arXiv:1804.07612 (2018).
W.G. Jiang, G. Hagen, T. Papenbrock, Extrapolation of nuclear structure observables with artificial neural networks. Phys. Rev. C. 100, 54326 (2019). doi: 10.1103/PhysRevC.100.054326http://doi.org/10.1103/PhysRevC.100.054326
R.S. Müller, T.I. Kamins, Device Electronics for Integrated Circuits, Wiley, New York,2003, p. 281-286.
B.S. Tolleson, P.C. Adell, B. Rax et al., Improved model for excess base current in irradiated lateral p-n-p bipolar junction transistors. IEEE T. Nucl. Sci. 65, 1488-1495 (2018). doi: 10.1109/TNS.2018.2829110http://doi.org/10.1109/TNS.2018.2829110
H.J. Barnaby, B. Vermeire, M.J. Campola, Improved model for increased surface recombination current in irradiated bipolar junction transistors. IEEE T. Nucl. Sci. 62, 1658-1664 (2015). doi: 10.1109/TNS.2015.2452229http://doi.org/10.1109/TNS.2015.2452229
H.J. Barnaby, S.K. Smith, R.D. Schrimpf et al., Analytical model for proton radiation effects in bipolar devices. IEEE T. Nucl. Sci. 49, 2643-2649 (2002). doi: 10.1109/TNS.2002.805410http://doi.org/10.1109/TNS.2002.805410
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution