Tian-Ze Bai, Chang-Hong Peng. Thermal hydraulic characteristics of helical coil once-through steam generator under ocean conditions. [J]. Nuclear Science and Techniques 33(10):134(2022)
DOI:
Tian-Ze Bai, Chang-Hong Peng. Thermal hydraulic characteristics of helical coil once-through steam generator under ocean conditions. [J]. Nuclear Science and Techniques 33(10):134(2022) DOI: 10.1007/s41365-022-01108-9.
Thermal hydraulic characteristics of helical coil once-through steam generator under ocean conditions
摘要
Abstract
Owing to its advantages of high heat transfer efficiency and compactness, the helical coil once-through steam generator (HCOTSG) can be used in floating nuclear power plants and has been widely used in the design of small modular reactors. The helical tubular geometric structure of the HCOTSG allows heat transfer and local flow changes to occur under complex ocean conditions. In this study, theoretical models of ocean conditions are added to the RELAP5/MOD3.3 code and verified. Using the modified RELAP5 code, the thermal-hydraulic characteristics of the HCOTSG under ocean conditions are simulated. The results show that under rolling conditions, the flow oscillation amplitudes of the single liquid-phase, two-phase flow, and single gas-phase regions are different. A circular change in the horizontal position of the helical tube causes the fluctuation of the parameters to change periodically. A phase difference of approximately 3.9 s at a flow rate of 23 kg/s is observed in the flow fluctuation along the axial direction. The driving force, period, and amplitude of rolling significantly affect the flow fluctuation in the HCOTSG. In natural circulation, the flow in the HCOTSG is complex, and the primary-side flow fluctuation can reduce the trough of the flow oscillation at the helical tube by approximately 24.3%.
S.P. Wang, B.W. Yang, Z.B. Zhou et al., Review on thermal-hydraulic characteristics of Nuclear Reactors Under Ocean Conditions. Nucl. Sci. Eng. 193, 14-32 (2019). doi: 10.1080/00295639.2018.1512791http://doi.org/10.1080/00295639.2018.1512791
X. Jie, Research Progress of Reactor thermal-hydraulic Characteristics under Ocean Conditions in China. Front. Energ. Res. 8, 593362 (2020). doi: 10.3389/fenrg.2020.593362http://doi.org/10.3389/fenrg.2020.593362
V.M. Belyaev, M.A. Bol’shukhin, A.N. Pakhomov et al., The world’s first floating NPP: origination and direction of future development. Atomic Energy, 129, 27-34 (2020). doi: 10.1007/s10512-021-00707-whttp://doi.org/10.1007/s10512-021-00707-w
H. Yao, G. Chen, K.L. Lu et al., Study on the systematic thermal-hydraulic characteristics of helical coil once-through steam generator. Ann. Nucl. Energy 154(3), 108096 (2021). doi: 10.1016/j.anucene.2020.108096http://doi.org/10.1016/j.anucene.2020.108096
H. Zhu, Z. Li, X. Yang et al., Flow regime identification for upward two-phase flow in helically coiled tubes. Chem. Eng. J. 308, 606-618 (2017). doi: 10.1016/j.cej.2016.09.100http://doi.org/10.1016/j.cej.2016.09.100
I. Ishida, T. Kusunoki, H. Murata et al., Thermal-hydraulic behavior of a marine reactor during oscillations. Nucl. Eng. Des. 120, 213-225 (1990). doi: 10.1016/0029-5493(90)90374-7http://doi.org/10.1016/0029-5493(90)90374-7
S.C. Tan, G.H. Su, P.Z. Gao, Experimental study on two-phase flow instability of natural circulation under rolling motion condition. Ann. Nucl. Energy 36, 103-113 (2009). doi: 10.1016/j.anucene.2008.09.014http://doi.org/10.1016/j.anucene.2008.09.014
S.C. Tan, G.H. Su, P.Z. Gao, Experimental and theoretical study on single-phase natural circulation flow and heat transfer under rolling motion condition. Appl. Therm. Eng. 29, 3160-3168 (2009). doi: 10.1016/j.applthermaleng.2009.04.019http://doi.org/10.1016/j.applthermaleng.2009.04.019
S.C. Tan, G.H. Su, P.Z. Gao, Heat transfer model of single-phase natural circulation flow under a rolling motion condition. Nucl. Eng. Des. 239, 2212-2216 (2009). doi: 10.1016/j.nucengdes.2009.05.002http://doi.org/10.1016/j.nucengdes.2009.05.002
C. Wang, X.H. Li, H. Wang et al., Experimental study on single-phase heat transfer of natural circulation in circular pipe under rolling motion condition. Nucl. Eng. Des. 27, 497-504 (2014). doi: 10.1016/j.nucengdes.2014.03.045http://doi.org/10.1016/j.nucengdes.2014.03.045
Z.T. Yu, S.C. Tan, H.S. Yuan et al., Experimental investigation on flow instability of forced circulation in a mini-rectangular channel under rolling motion. Int. J. Heat Mass Transf. 92, 732-743 (2016). doi: 10.1016/j.ijheatmasstransfer.2015.09.048http://doi.org/10.1016/j.ijheatmasstransfer.2015.09.048
T. Ishida, I. Tomiai, Development of analysis code for thermal hydro-dynamics of marine reactor under multi-dimensional ship motions, RETRAN-02/GRAV. Improvement of RETRAN-02 and experimental analyses. Japan Atomic Energy Research Inst, Tokyo (1992).
J.H. Kim, G.C. Park, Development of RETRAN-03/MOV code for thermal-hydraulic analysis of nuclear reactor under moving conditions. J. Korean Nucl. Soc. 28 (6), 542-550 (1996).
B.H. Yan, L. Yu, The development and validation of a thermal hydraulic code in rolling motion. Ann. Nucl. Energy 38, 1728-1736 (2011). doi: 10.1016/j.anucene.2011.04.007http://doi.org/10.1016/j.anucene.2011.04.007
H.J. Gong, X.T. Yang, Y.P. Huang et al., The development and validation of a natural circulation analysis code for marine reactors. J. Nucl. Sci. Technol. 54, 500-512 (2017). doi: 10.1080/00223131.2016.1262295http://doi.org/10.1080/00223131.2016.1262295
K. Cheng, T. Meng, F.L. Zhao, et al., Development and validation of a thermal hydraulic transient analysis code for offshore floating nuclear reactor based on RELAP5/SCDAPSIM/MOD3.4. Ann. Nucl. Energy 127, 215-226 (2019). doi: 10.1016/j.anucene.2018.12.004http://doi.org/10.1016/j.anucene.2018.12.004
A. Cioncolini, A. Cammi, C. Lombardi et al., Thermal hydraulic analysis of IRIS reactor coiled tube steam generator. In: Proc. ANS M&C 2003 Topical Meeting, Paper 129, Gatlinburg, USA, April 6-11. (2003).
Z.Y. Xu, M.L. Liu, Y. Xiao et al., Development of a RELAP5 model for the thermo-hydraulic characteristics simulation of the helically coiled tubes. Ann. Nucl. Energy 153, 108032 (2021). doi: 10.1016/j.anucene.2020.108032http://doi.org/10.1016/j.anucene.2020.108032
X.J. Li, T.L. Cong, Y.R. Chen et al., Research on backflow characteristics in U-tube of forced circulation steam generator under ocean conditions. Prog. Nucl. Energy 140, 103894 (2021). doi: 10.1016/j.pnucene.2021.103894http://doi.org/10.1016/j.pnucene.2021.103894
Q.Q. Yan, S.M. Luo, Y.P. Zhang et al., Effect of single and combined ocean motions on a small OFNP under SBO accidents. Ann. Nucl. Energy 145, 107564 (2020). doi: 10.1016/j.anucene.2020.107564http://doi.org/10.1016/j.anucene.2020.107564
V.H. Ransom, J.A. Trapp, R.J. Wagner, RELAP5/MOD3.3 Code Manual Volume I: Code Structure, System Models, and Solution Methods In: NUREG/CR-5535/Rev 1. Idaho National Engineering Laboratory (2001).
D. Li, R. Hao, Study on LOFA and LOHS accidents with passive safety system for integrated marine reactor. Nucl. Sci. Eng. 196, 209-220 (2022). doi: 10.1080/00295639.2021.1968760http://doi.org/10.1080/00295639.2021.1968760
A. Achilli, C. Congiu, R. Ferri et al., SPES3 facility RELAP5 sensitivity analyses on the containment system for design review. Sci. Technol. Nucl. Ins. 2012, 173637 (2012). doi: 10.1155/2012/173637http://doi.org/10.1155/2012/173637
Loss of Offsite Power (LOOP) accident analysis by integration of deterministic and probabilistic approaches in Bushehr-1 VVER-1000/V446 Nuclear Power Plant
Integrity control of an RBMK-1500 fuel rod locally oxidized under a bounding reactivity-initiated accident
Thermal-hydraulic analysis of space nuclear reactor TOPAZ-II with modified RELAP5
Thermal-hydraulic Design and Transient analysis of Passive cooling system for CPR1000 spent fuel storage pool
Two-phase flow instability in a parallel multichannel system
Related Author
No data
Related Institution
Department of Nuclear Engineering, Science and Research Branch, Islamic Azad University
Reactor and nuclear safety school, Nuclear Science and Technology Research Institute (NSTRI)
Division of Fuel Technology, Nuclear Research Center of Draria