1.Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, China
2.Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Tsinghua University, Beijing 100084, China
luzhenming@wust.edu.cn (Zhenming Lu)
bingliu@tsinghua.edu.cn (Bing Liu)
Scan for full text
Zhen-Ming Lu, Wen-Ke Zhang, Jie Zhang, et al. Research on manufacture technology of spherical fuel elements by dry-bag isostatic pressing. [J]. Nuclear Science and Techniques 33(10):129(2022)
Zhen-Ming Lu, Wen-Ke Zhang, Jie Zhang, et al. Research on manufacture technology of spherical fuel elements by dry-bag isostatic pressing. [J]. Nuclear Science and Techniques 33(10):129(2022) DOI: 10.1007/s41365-022-01110-1.
The steady development of high-temperature gas-cooled reactors (HTRs) has increased the requirements for the production cost and quality of fuel elements. Green fuel element pressing is one of the key steps to increase the production capacity. This paper proposes a proprietary vacuum dry-bag isostatic pressing (DIP) apparatus. The structural change of the matrix graphite powder during the DIP process was examined by analyzing the density change of the matrix graphite spheres with pressure. The soft molding process was simulated using the finite element method. The dimensional changes in the spheres during the pressing, carbonization, and purification stages were explored. The performance of the fuel matrix produced by the DIP method was comprehensively examined. The fuel matrix met the technical requirements and its anisotropy was significantly reduced. The DIP method can significantly improve both the production efficiency and quality of fuel elements. This will play a key role in meeting the huge demand for fuel elements of HTRs and molten salt reactors.
Dry-bag isostatic pressingHigh-temperature gas-cooled reactor (HTR)Spherical fuel elementFinite element SimulationSoft molding
Z.Y. Zhang, Z.X. Wu, D.Z. Wang et al., Current status and technical description of Chinese 2×250 MWth HTR-PM demonstration plant. Nucl. Eng. Des. 239(7), 1212-1219(2009). doi: 10.1016/j.nucengdes.2009.02.023http://doi.org/10.1016/j.nucengdes.2009.02.023
Z.Y. Zhang, Y.J. Dong, F. Li et al., The Shandong Shidao bay 200 MWe high-temperature gas-cooled reactor pebble-bed module (HTR-PM) demonstration power plant: An engineering and technological innovation. Engineering 2(1), 112-118 (2016). doi: 10.1016/J.ENG.2016.01.020http://doi.org/10.1016/J.ENG.2016.01.020
Z.Y. Zhang, Y.J. Dong, Q. Shi et al., 600 MWe high temperature gas-cooled reactor nuclear power plant HTR-PM600. Nucl. Sci. Tech. 33, 101 (2022). doi: 10.1007/s41365-022-01089-9http://doi.org/10.1007/s41365-022-01089-9
D. She, B. Xia, J. Guo et al., Prediction calculations for the first criticality of the HTR-PM using the PANGU code. Nucl. Sci. Tech. 32, 90 (2021). doi: 10.1007/s41365-021-00936-5http://doi.org/10.1007/s41365-021-00936-5
C.H. Tang, Y.P. Tang, J.G. Zhu, et al., Design and manufacture of the fuel element for the 10 MW high temperature gas-cooled reactor. Nucl. Eng. Des. 218, 91-102(2002). doi: 10.1016/S0029-5493(02)00201-7http://doi.org/10.1016/S0029-5493(02)00201-7
J. Zhang, Z.M. Lu, B. Liu et al., Quasi-isostatic vacuum hydraulic press. CN Patent 201210177503.7, 31 May 2012.
W. Dell, R.E. Schulze, L. Blinkele et al., Warm-Moudle de graphitic matrix for spherical HTR fuel elements in Germany, Juel-Con-52, Juni,15-19 (1985).
J. Zhang, B. Liu, Z.M. Lu et al., A manufacturing method of green spherical fuel element. CN Patent 201811619914.0, 28 Dec. 2018.
Z.M. Lu, J. Zhang, B. Liu et al., A device and a method for pressing green spherical fuel element. CN Patent 201810509223.9, 24 May 2018
Z.M. Lu, J. Zhang, X.W. Zhou et al., Optimization of carbonization process in manufacture of fuel elements for HTGR. Nucl. Power. Eng. 34 (5), 71-75 (2013). (in Chinese)
H.S. Zhao, T.X. Liang, J. Zhang et al., Manufacture and characteristics of spherical fuel elements for the HTR-10. Nucl. Eng. Des. 236, 643-647 (2006). doi: 10.1016/j.nucengdes.2005.10.023http://doi.org/10.1016/j.nucengdes.2005.10.023
C.Y. Wu, L.Y.Z hang, Mechanical principle of powder forming, 1st edn. (Metallurgical Industry Press, Beijing: 2003), pp. 36-44.
P.Y. Huang, Principles of powder metallurgy, 2nd edn. (Metallurgical Industry Press, Beijing: 1997), pp.169-189.
X.Z. An, Y.L. Zhang, Y.X. Zhang et al., Finite element modelling on the compaction of copper powder under different conditions. Metall. Mater. Trans. A. 46, 3744-3752 (2015). doi: 10.1007/s11661-015-2929-xhttp://doi.org/10.1007/s11661-015-2929-x
H.Q. Fan, C.C. Huang, X. Wang, et al., Numerical simulation of stress behavior of dowel-brick structures in TMSR. Nucl. Sci. Tech. 31, 51 (2020). doi: 10.1007/s41365-020-00761-2http://doi.org/10.1007/s41365-020-00761-2
Y. Zou, X.Z. An, Q. Jia et al., Three-dimensional MPFEM modelling on isostatic pressing and solid phase sintering of tungsten powders. Powder. Technol. 354, 854-866 (2019). doi: 10.1016/j.powtec.2019.07.013http://doi.org/10.1016/j.powtec.2019.07.013
P. Han, X.Z. An, D.F. Wang et al., MPFEM simulation of compaction densification behavior of Fe-Al composite powders with different size ratios. J. Alloys. Compd. 741(15), 473-481 (2018). doi: 10.1016/j.jallcom.2018.01.198http://doi.org/10.1016/j.jallcom.2018.01.198
S. Shima, M. Oyane, Plasticity theory for porous metals. Int. J. Mech. Sci. 18(6), 285-291 (1976). doi: 10.1016/0020-7403(76)90030-8http://doi.org/10.1016/0020-7403(76)90030-8
S. Shima, M. Yamada, Compaction of metal powder by rolling. Powder. Metall. 27(1), 39-44 (1984). doi: 10.1179/pom.1984.27.1.39http://doi.org/10.1179/pom.1984.27.1.39
D. N. Lee, H.I. Kim, Plastic yield behaviour of porous metal. Powder. Metall. 35 (4), 275-279 (1992). doi: 10.1179/pom.1992.35.4.27http://doi.org/10.1179/pom.1992.35.4.27
H.C. Yang, J.W. Lee, K.T. Kim, Rubber isostatic pressing of metal powder under warm temperatures. Powder. Technol. 139, 240-251 (2004). doi: 10.1016/j.powtec.2003.01.001http://doi.org/10.1016/j.powtec.2003.01.001
Z.M. Lu, X.F. Gao, W.K. Zhang et.al., Effect of soft-mould pressing method on anisotropy of the graphitic matrix spheres: Dry-bag isostatic vs. Quasi-isostatic. J. Nucl. Mater. 570, 153950 (2022). doi: 10.1016/j.jnucmat.2022.153950http://doi.org/10.1016/j.jnucmat.2022.153950
X.W. Zhou, Z.M. Lu, J. Zhang et.al., Studies on the dimensional and mass changes of spherical fuel element during the heat treatment. Carbon. Tech. 33 (6), 1-4 (2014).
S.P. Jing, C. Zhang, J. Pu et al., 3D microstructures of nuclear graphite: IG-110, NBG-18 and NG-CT-10. Nucl. Sci. Tech. 27, 66 (2016). doi: 10.1007/s41365-016-0071-0http://doi.org/10.1007/s41365-016-0071-0
R.E Schulze, H.A. Schulze, W. Rind, Graphitic matrix materials for spherical HTR fuel elements. Juel-Spe-167, Juni 1982.
R.R. Yang, Y. Yuan, C. Hao et al., keff uncertainty quantification and analysis due to nuclear data during the full lifetime burnup calculation for a small-sized prismatic high temperature gas-cooled reactor. Nucl. Sci. Tech. 32, 127 (2021). doi: 10.1007/s41365-021-00969-whttp://doi.org/10.1007/s41365-021-00969-w
H.M. Şahin, G. Tunç, A. Karakoç et al., Neutronic study on the effect of first wall material thickness on tritium production and material damage in a fusion reactor. Nucl. Sci. Tech. 33, 43 (2022). doi: 10.1007/s41365-022-01029-7http://doi.org/10.1007/s41365-022-01029-7
M.L. Tan, G.F. Zhu, Z.D. Zhang et al., Burnup optimization of once-through molten salt reactors using enriched uranium and thorium. Nucl. Sci. Tech. 33, 5 (2022). doi: 10.1007/s41365-022-00995-2http://doi.org/10.1007/s41365-022-00995-2
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution