1.Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
wangwei@impcas.ac.cn
Scan for full text
Wei Wang, Xiao-Xiao Yuan, Xiao-Hong Cai. A beam range monitor based on scintillator and multi-pixel photon counter arrays for heavy ions therapy. [J]. Nuclear Science and Techniques 33(10):123(2022)
Wei Wang, Xiao-Xiao Yuan, Xiao-Hong Cai. A beam range monitor based on scintillator and multi-pixel photon counter arrays for heavy ions therapy. [J]. Nuclear Science and Techniques 33(10):123(2022) DOI: 10.1007/s41365-022-01113-y.
Fast beam range measurements are required to maximize the time available for patient treatment, given that the beam range requires verification with respect to quality assurance to maintain accelerator commissioning standards and ensure patient safety. A novel beam-range monitor based on a plastic scintillator and multipixel photon counter (MPPC) arrays is therefore proposed in this paper. The monitor was constructed using 128 plastic scintillator films with a thickness of 1 mm and an active area of 50 × 50 mm,2,. A customized MPPC array read the scintillation light of each film. The advantage of dividing the active detector volume into films is that it intercepts the particle beam and enables direct differential light yield measurement in each film, in addition to depth-light curve generation without the need for image analysis. A GEANT4 simulation, including scintillator quenching effects, was implemented, and the results revealed that Birks’ law exhibited a slight little influence on the position of the beam range, only changing the shape and absolute normalization of the Bragg curve; which is appropriate for the calculation of the beam range using the depth-light curve. The performance of the monitor was evaluated using a heavy-ion medical machine (HIMM) in Wuwei City, Gansu Province, China. The beam range measurement accuracy of the monitor was 1 mm, and the maximum difference between the measured and reference ranges was less than 0.2%, thus indicating that the monitor can meet clinical carbon ion therapy requirements.
Beam rangeScintillatorMultipixel photon counter (MPPC)Depth-Light curve
Cancer Today: Date visualization tools for exploring the global cancer burden in 2020. International Agency for Research on Cancer. https://gco.iarc.fr/todayhttps://gco.iarc.fr/today. Accessed 7 May 2022.
H. D. Huh, S. Kim, History of radiation therapy technology. Prog. Med. Phys. 31(3), 124-134(2020). doi: 10.14316/pmp.2020.31.3.124http://doi.org/10.14316/pmp.2020.31.3.124
W.C. Fang, X.X. Huang, J. H. Tan et al., Proton linac-based therapy facility for ultra-high dose rate (FLASH) treatment. Nucl. Sci. Tech. 32, 34 (2021). doi: 10.1007/s41365-021-00872-4http://doi.org/10.1007/s41365-021-00872-4
P.G. Prasanna, H.B. Stone, R.S. Wong et al., Normal tissue protection for improving radiotherapy: Where are the Gaps? Transl. Cancer. Res. 1(1), 35-48(2012). doi: 10.3978/j.issn.2218-676X.2012.05.05http://doi.org/10.3978/j.issn.2218-676X.2012.05.05
J. Thariat, J. M. Hannoum-Levl, A. S. Myint et al., Past, present, and future of radiotherapy for the benefit of patients. Nat. Rev. Clin. Oncol. 10, 52-60(2013). doi: 10.1038/nrclinonc.2012.203http://doi.org/10.1038/nrclinonc.2012.203
M. Durante, H. Paganetti, Nuclear physics in particle therapy: a review. Rep. Prog. Phys. 79, 096702 (2016). doi: 10.1088/0034-4885/79/9/096702http://doi.org/10.1088/0034-4885/79/9/096702
D. Schardt, T. Elsassr, S.E. Daniela, Heavy-ion tumor therapy: Physical and radiobiological benefits. Rev. Mod. Phys. 82, 383-425 (2010). doi: 10.1103/RevModPhys.82.383http://doi.org/10.1103/RevModPhys.82.383
U. Weber, G. Kraft, Comparison of carbon ions versus protons. Cancer J. 15, 325-332(2009). doi: 10.1097/PPO.0b013e3181b01935http://doi.org/10.1097/PPO.0b013e3181b01935
K. Parodi, J.C. Polf, In vivo range verification in particle therapy. Med. Phys. 45(11), e1036-e1050(2018). doi: 10.1002/mp.12960http://doi.org/10.1002/mp.12960
Y. Fan, G.M. Huang, X.M. Sun et al., Design of detector to monitor the Bragg peak location of carbon ions by means of prompt γ-ray measurements with Geant4. Nucl. Sci. Tech. 29, 48 (2018). doi: 10.1007/s41365-018-0388-yhttp://doi.org/10.1007/s41365-018-0388-y
C. P. Karger, O. Jakel, H. Palmans et al., Dosimetry for ion beam radiotherapy. Phys. Med. Biol. 55(21), R193-234(2010). doi: 10.1088/0031-9155/55/21/R01http://doi.org/10.1088/0031-9155/55/21/R01
K. Wei, Z.G. Xu, R.S. Mao et al., Performances of the beam monitoring system and quality assurance equipment for the HIMM of carbon‐ion therapy. J. Appl. Clin. Med. Phys, 21(8), 289-298(2020). doi: 10.1002/acm2.12916http://doi.org/10.1002/acm2.12916
L. Beaulieu, S. Beddar, Review of plastic and liquid scintillation dosimetry for photon, electron and proton therapy. Phys. Med. Biol. 61, R305 (2016). doi: 10.1088/0031-9155/61/20/R305http://doi.org/10.1088/0031-9155/61/20/R305
G.F. Knoll, Radiation detection and measurement. 4th edition(Wiley, Hoboken, 2010). pp. 223-274. ISBN: 978-0-470-13148-0. https://www.wiley.com/en-us/Radiation+Detection+and+Measurement%2C+4th+Edition-p-9780470131480https://www.wiley.com/en-us/Radiation+Detection+and+Measurement%2C+4th+Edition-p-9780470131480
L. Kelleter, R. Radogna, L. Volz et al., A scintillator-based range telescope for particle therapy. Phys. Med. Biol. 65, 165001 (2020). doi: 10.1088/1361-6560/ab9415http://doi.org/10.1088/1361-6560/ab9415
B. Rossi, High-energy particles. American J. Phys. 21, 236 (1953), doi: 10.1119/1.1933408http://doi.org/10.1119/1.1933408
J.B. Christensen, C.E. Andersen, Relating ionization quenching in organic plastic scintillators to basic material properties by modelling excitation density transport and amorphous track structure during proton irradiation. Phys. Med. Biol. 63(19), 195010 (2018). doi: 10.1088/1361-6560/aadf2dhttp://doi.org/10.1088/1361-6560/aadf2d
ELJEN Technology, EJ-200 scintillator data sheet. https://eljentechnology.com/products/plastic-scintillators/ej-200-ej-204-ej-208-ej-212https://eljentechnology.com/products/plastic-scintillators/ej-200-ej-204-ej-208-ej-212. Accessed 7 May 2022.
Hamamatsu MPPC arrays S13615 series. http://www.hamamatsu.com.cn/UserFiles/upload/file/20210608/s13615_series_kapd1062e.pdfhttp://www.hamamatsu.com.cn/UserFiles/upload/file/20210608/s13615_series_kapd1062e.pdf. Accessed 7 May 2022.
A. Ghassemi, K. Sato, K. Kobayashi, MPPC (2021). https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/ssd/mppc_kapd9005e.pdfhttps://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/ssd/mppc_kapd9005e.pdf. Accessed 7 May 2022.
W. Wang, D.Y. Yu, J.L. Liu et al., Note: A charge sensitive spectroscopy amplifier for position sensitive micro-channel plate detectors. Rev. Sci. Instrum. 85, 106104 (2014). doi: 10.1063/1.4898175http://doi.org/10.1063/1.4898175
L.P. Yang, J.L. Liu, Y. Z. Zhang et al., Note: A two-dimensional position-sensitive micro-channel plate detector with a cross-connected-pixels resistive anode and integrated spectroscopy amplifiers. Rev. Sci. Instrum. 88, 086103 (2017). doi: 10.1063/1.4997551http://doi.org/10.1063/1.4997551
Mesytec MADC-32 data sheet V2.1_04. http://www.mesytec.com/products/datasheets/MADC-32.pdfhttp://www.mesytec.com/products/datasheets/MADC-32.pdf. Accessed 7 May 2022.
MVME-Mesytec VME data acquisition release 1.4.9-rc2. http://www.mesytec.com/downloads/mvme/mvme.pdfhttp://www.mesytec.com/downloads/mvme/mvme.pdf. Accessed 7 May 2022.
F. Acerbi, S. Gundacker, Understanding and simulating SiPMs. Nucl. Instrum. Meth. A. 926, 1635(2019). doi: 10.1016/j.nima.2018.11.118http://doi.org/10.1016/j.nima.2018.11.118
S. Agostinelli, J. Allison, K. Amako et al., Geant4: A Simulation toolkit. Nucl. Instrum. Meth. A, 506, 250-303(2003). doi: 10.1016/S0168-9002(03)01368-8http://doi.org/10.1016/S0168-9002(03)01368-8
L.L.W. Wang, L.A. Perles, L. Archambault et al., Determination of the quenching correction factors for plastic scintillation detectors in therapeutic high-energy proton beams. Phys. Med. Biol. 57(23), 7767-7781(2012). doi: 10.1088/0031-9155/57/23/7767http://doi.org/10.1088/0031-9155/57/23/7767
F. Alsanea, F. Therriault-Proulx, G. Sawakuchi et al., A real-time method to simultaneously measure linear energy transfer and dose for proton therapy using organic scintillators. Med. Phys. 45(4), 1782-1789(2018). doi: 10.1002/mp.12815http://doi.org/10.1002/mp.12815
C. Hoehr, C. Lindsay, J. Beaudry et al., Characterization of the exradin W1 plastic scintillation detector for small field applications in proton therapy. Phys. Med. Biol. 63(9), 095016 (2018). doi: 10.1088/1361-6560/aabd2dhttp://doi.org/10.1088/1361-6560/aabd2d
J.B. Birks, The theory and practice of scintillation counting. (Pergamon, 1964). ISBN: 978-0-08-010472-0. doi: 10.1016/C2013-0-01791-4http://doi.org/10.1016/C2013-0-01791-4
J. Boivin, S. Beddar, C. Bonde et al., A systematic characterization of the low-energy photon response of plastic scintillation detectors. Phys. Med. Biol. 61(15), 5569-5586(2016). doi: 10.1088/0031-9155/61/15/5569http://doi.org/10.1088/0031-9155/61/15/5569
Z.W. Fu, B. Han, Y. Chen, Levenberg-Marquardt method with general convex penalty for nonlinear inverse problems. J. Comput. Appl. Math. 404, 113771 (2022). doi: 10.1016/j.cam.2021.113771http://doi.org/10.1016/j.cam.2021.113771
J. C. Yang, J. Shi, W.P. Chai et al., Design of a compact structure cancer therapy synchrotron. Nucl. Instrum. Meth. A. 756, 1932(2014). doi: 10.1016/j.nima.2014.04.050http://doi.org/10.1016/j.nima.2014.04.050
J. Shi, J. C. Yang, J.W. Xia et al., Heavy ion medical machine (HIMM) slow extraction commissioning. Nucl. Instrum. Meth. A. 918, 7681 (2019). doi: 10.1016/j.nima.2018.11.014http://doi.org/10.1016/j.nima.2018.11.014
B. Arjomandy, P. Taylor, C. Ainsley et al., AAPM task group 224: Comprehensive proton therapy machine quality assurance. Med. Phys. 46(8), e678-e705(2019). doi: 10.1002/mp.13622http://doi.org/10.1002/mp.13622
0
Views
4
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution