1.School of Physics, Henan Normal University, Xinxiang 453007, China
chengkaixuan@htu.edu.cn
machunwang@126.com
Scan for full text
Kai-Xuan Cheng, Jie Pu, Yu-Ting Wang, et al. Non-frozen process of heavy-ion fusion reactions at deep sub-barrier energies. [J]. Nuclear Science and Techniques 33(10):132(2022)
Kai-Xuan Cheng, Jie Pu, Yu-Ting Wang, et al. Non-frozen process of heavy-ion fusion reactions at deep sub-barrier energies. [J]. Nuclear Science and Techniques 33(10):132(2022) DOI: 10.1007/s41365-022-01114-x.
The hindrance in heavy-ion fusion reactions at deep sub-barrier energies is investigated using the double folding model with a hybrid method between the frozen and adiabatic density approximations. In this method, the density distributions of the projectile and the target depend closely on the distance between them. As the distance decreased, the half-density radii of the colliding nuclei gradually increased to the half-density radius of the compound nucleus. The total potential based on this non-frozen approximation generates a slightly shallower pocket and becomes more attractive inside the pocket compared to that obtained from the frozen approximation. A damping factor was used to simulate the decline of the coupled channel effects owing to the density rearrangement of the two colliding nuclei. The calculated fusion cross-sections and astrophysical S factors at the deep sub-barrier energies are both in good agreement with the experimental data for the medium-heavy ,64,Ni + ,64,Ni and medium-light ,24,Mg + ,30,Si mass systems. In addition, it was concluded that the apparent maximum of the S factors most likely appear in fusion systems with strong coupling effects.
Adiabatic approximationDouble folding modelFusion hindrance
H. Esbensen and S. Landowne, Higher-order coupling effects in low energy heavy-ion fusion reactions. Phys. Rev. C 35, 2090 (1987). doi: 10.1103/PhysRevC.35.2090http://doi.org/10.1103/PhysRevC.35.2090
A. B. Balantekin and N. Takigawa, Quantum tunneling in nuclear fusion. Rev. Mod. Phys. 70, 77 (1998). doi: 10.1103/RevModPhys.70.77http://doi.org/10.1103/RevModPhys.70.77
K. Hagino and N. Takigawa, Subbarrier fusion reactions and many-particle quantum tunneling. Prog. Theor. Phys. 128, 1061 (2012). doi: 10.1143/PTP.128.1061http://doi.org/10.1143/PTP.128.1061
J. O. Newton, C. R. Morton, M. Dasgupta et al., Experimental barrier distributions for the fusion of 12C, 16O, 28Si, and 35Cl with 92Zr and coupled-channels analyses. Phys. Rev. C 64, 064608 (2001). doi: 10.1103/PhysRevC.64.064608http://doi.org/10.1103/PhysRevC.64.064608
K. Hagino, N. Takigawa, M. Dasgupta, et al., Validity of the linear coupling approximation in heavy-ion fusion reactions at sub-barrier energies. Phys. Rev. C 55 276 (1997). doi: 10.1103/PhysRevC.55.276http://doi.org/10.1103/PhysRevC.55.276
C.J. Lin, H.M. Jia, H.Q. Zhang et al., Systematic study of the surface properties of the nuclear potential with high precision large-angle quasi-elastic scatterings. Phys. Rev. C 79, 064603 (2009). doi: 10.1103/PhysRevC.79.064603http://doi.org/10.1103/PhysRevC.79.064603
F. Niu, P.-H. Chen, H.-G. Cheng et al., Multinucleon transfer dynamics in nearly symmetric nuclear reactions. Nucl. Sci. Tech. 31, 59 (2020). doi: 10.1007/s41365-020-00770-1http://doi.org/10.1007/s41365-020-00770-1
P.-H. Chen, F. Niu, Y.-F. Guo, Z.-Q. Feng, Nuclear dynamics in multinucleon transfer reactions near Coulomb barrier energies. Nucl. Sci. Tech. 29, 185 (2018). doi: 10.1007/s41365-018-0521-yhttp://doi.org/10.1007/s41365-018-0521-y
C. H. Dasso and S. Landowne, CCFUS — A simplified coupled-channel code for calculation of fusion cross sections in heavy-ion reactions. Comput. Phys. Commun. 46, 187 (1987). doi: 10.1016/0010-4655(87)90045-2http://doi.org/10.1016/0010-4655(87)90045-2
J. Fernández-Niello, C. H. Dasso, S. Landowne, CCDEF - A simplified coupled-channel code for fusion cross sections including static nuclear deformations. Comput. Phys. Commun. 54, 409 (1989). doi: 10.1016/0010-4655(89)90100-8http://doi.org/10.1016/0010-4655(89)90100-8
K. Hagino, N. Rowley, A. T. Kruppa, A program for coupled-channel calculations with all order couplings for heavy-ion fusion reactions. Comput. Phys. Commun. 123, 143 (1999). doi: 10.1016/S0010-4655(99)00243-Xhttp://doi.org/10.1016/S0010-4655(99)00243-X
M. Hosamani, A. Vinayak, N. Badiger, Investigating the effect of entrance channel mass asymmetry on fusion reactions using the Skyrme energy density formalism. Nucl. Sci. Tech. 31, 89 (2020). doi: 10.1007/s41365-020-00802-whttp://doi.org/10.1007/s41365-020-00802-w
C.L. Jiang, H. Esbensen, K.E. Rehm et al., Unexpected behavior of heavy-Ion fusion cross sections at extreme sub-barrier energies. Phys. Rev. Lett. 89, 052701 (2002). doi: 10.1103/PhysRevLett.89.052701http://doi.org/10.1103/PhysRevLett.89.052701
B.B. Back, H. Esbensen, C.L. Jiang et al., Recent developments in heavy-ion fusion reactions. Rev. Mod. Phys. 86, 317 (2014). doi: 10.1103/RevModPhys.86.317http://doi.org/10.1103/RevModPhys.86.317
M. Dasgupta, D.J. Hinde, A. Diaz-Torres et al., Beyond the coherent coupled channels description of nuclear fusion. Phys. Rev. Lett. 99, 192701 (2007). doi: 10.1103/PhysRevLett.99.192701http://doi.org/10.1103/PhysRevLett.99.192701
K. Hagino, N. Rowley, M. Dasgupta, Fusion cross sections at deep sub-barrier energies. Phys. Rev. C 67, 054603 (2003). doi: 10.1103/PhysRevC.67.054603http://doi.org/10.1103/PhysRevC.67.054603
V.V. Sargsyan, Z. Kanokov, G.G. Adamian et al., Capture process in nuclear reactions with a quantum master equation. Phys. Rev. C 80, 034606 (2009). doi: 10.1103/PhysRevC.80.034606http://doi.org/10.1103/PhysRevC.80.034606
V. Yu Denisov, Nucleus-nucleus potential with shell-correction contribution. Phys. Rev. C 91, 024603 (2015). doi: 10.1103/PhysRevC.91.024603http://doi.org/10.1103/PhysRevC.91.024603
C.L. Jiang, B.B. Back, K.E. Rehm et al., Heavy-ion fusion reactions at extreme subbarrier energies. Eur. Phys. J. A 57, 235 (2021). doi: 10.1140/epja/s10050-021-00536-2http://doi.org/10.1140/epja/s10050-021-00536-2
V. Yu. Denisov, Multidimensional harmonic oscillator model of subbarrier fusion. Eur. Phys. J. A 58, 91 (2022). doi: 10.1140/epja/s10050-022-00746-2http://doi.org/10.1140/epja/s10050-022-00746-2
K.-X. Cheng, C. Xu, C.-W. Ma et al., Pauli blocking potential applied to heavy-ion fusion reactions. Chin. Phys. C 46, 024105 (2022). doi: 10.1088/1674-1137/ac3749http://doi.org/10.1088/1674-1137/ac3749
D. Boilley, B. Cauchois, H.L. Lü et al., How accurately can we predict synthesis cross sections of superheavy elements? Nucl. Sci. Tech. 29, 172 (2018). doi: 10.1007/s41365-018-0509-7http://doi.org/10.1007/s41365-018-0509-7
Z.-Q. Feng, Nuclear dynamics and particle production near threshold energies in heavy-ion collisions. Nucl. Sci. Tech. 29, 40 (2018). doi: 10.1007/s41365-018-0379-zhttp://doi.org/10.1007/s41365-018-0379-z
C.L. Jiang, B.B. Back, H. Esbensen et al., Origin and consequences of 12C + 12C fusion resonances at deep sub-barrier energies. Phys. Rev. Lett. 110, 072701 (2013). doi: 10.1103/PhysRevLett.110.072701http://doi.org/10.1103/PhysRevLett.110.072701
C.L. Jiang, D. Santiago-Gonzalez, S. Almaraz-Calderon et al., Reaction rate for carbon burning in massive stars. Phys. Rev. C 97, 012801(R) 2018. doi: 10.1103/PhysRevC.97.012801http://doi.org/10.1103/PhysRevC.97.012801
N.T. Zhang, X.Y. Wang, D. Tudor et al., Constraining the 12C + 12C astrophysical S-factors with the 12C + 13C measurements at very low energies. Phys. Lett. B 801, 135170 (2020). doi: 10.1016/j.physletb.2019.135170http://doi.org/10.1016/j.physletb.2019.135170
T.-P. Luo, P.-W. Wen, C.-J. Lin et al., Bayesian analysis on non-resonant behavior of 12C + 12C fusion reaction at sub-barrier energies. Chin. Phys. C 46, 064105 (2022). doi: 10.1088/1674-1137/ac5587http://doi.org/10.1088/1674-1137/ac5587
V.V. Sargyan, G.G. Adamian, N.V. antonenko et al., Constraints on the appearance of a maximum in astrophysical S-factor. Phys. Lett. B 824, 136792 (2022). doi: 10.1016/j.physletb.2021.136792http://doi.org/10.1016/j.physletb.2021.136792
X.-D. Tang, S.-B. Ma, X. Fang et al., An efficient method for mapping the 12C+12C molecular resonances at low energies. Nucl. Sci. Tech. 30, 126 (2019). doi: 10.1007/s41365-019-0652-9http://doi.org/10.1007/s41365-019-0652-9
Ş. Mişicu, H. Esbensen, Hindrance of heavy-ion fusion due to nuclear incompressibility. Phys. Rev. Lett. 96, 112701 (2006). doi: 10.1103/PhysRevLett.96.112701http://doi.org/10.1103/PhysRevLett.96.112701
Ş. Mişicu, H. Esbensen, Signature of shallow potentials in deep sub-barrier fusion reactions. Phys. Rev. C 75, 034606 (2007). doi: 10.1103/PhysRevC.75.034606http://doi.org/10.1103/PhysRevC.75.034606
H. Esbensen, Ş. Mişicu, Hindrance of 16O + 208Pb fusion at extreme subbarrier energies. Phys. Rev. C 76, 054609 (2007). doi: 10.1103/PhysRevC.76.054609http://doi.org/10.1103/PhysRevC.76.054609
C. Simenel, A.S. Umar, K. Godbey et al., How the Pauli exclusion principle affects fusion of atomic nuclei. Phys. Rev. C 95, 031601(R) (2017). doi: 10.1103/PhysRevC.95.031601http://doi.org/10.1103/PhysRevC.95.031601
A.S. Umar, C. Simennel, K. Godbey, Pauli energy contribution to the nucleus-nucleus interaction. Phys. Rev. C 104, 034619 (2021). doi: 10.1103/PhysRevC.104.034619http://doi.org/10.1103/PhysRevC.104.034619
K.X. Cheng, C. Xu, Pauli blocking effects in α-induced fusion reactions. Phys. Rev. C 99, 014607 (2019). doi: 10.1103/PhysRevC.99.014607http://doi.org/10.1103/PhysRevC.99.014607
K.X. Cheng, C. Xu, Pauli blocking effects in nα-nucleus-induced fusion reactions. Phys. Rev. C 102, 014619 (2020). doi: 10.1103/PhysRevC.102.014619http://doi.org/10.1103/PhysRevC.102.014619
T. Ichikawa, K. Hagino, A. Iwamoto, Signature of smooth transition from sudden to adiabatic states in heavy-ion fusion reactions at deep sub-barrier energies. Phys. Rev. Lett. 103, 202701 (2009). doi: 10.1103/PhysRevLett.103.202701http://doi.org/10.1103/PhysRevLett.103.202701
T. Ichikawa, Systematic investigations of deep sub-barrier fusion reactions using an adiabatic approach. Phys. Rev. C 92, 064604 (2015). doi: 10.1103/PhysRevC.92.064604http://doi.org/10.1103/PhysRevC.92.064604
A. Winther, Dissipation, polarization and fluctuation in grazing heavy-ion collisions and the boundary to the chaotic regime. Nucl. Phys. A 594, 203 (1995). doi: 10.1016/0375-9474(95)00374-Ahttp://doi.org/10.1016/0375-9474(95)00374-A
G. Röpke, P. Schuck, Y. Funaki et al., Nuclear clusters bound to doubly magic nuclei: The case of212Po. Phys. Rev. C 90, 034304 (2014). doi: 10.1103/PhysRevC.90.034304http://doi.org/10.1103/PhysRevC.90.034304
C. Xu, G. Röpke, P. Schuck et al., α-cluster formation and decay in the quartetting wave function approach. Phys. Rev. C 95, 061306(R) (2017). doi: 10.1103/PhysRevC.95.061306http://doi.org/10.1103/PhysRevC.95.061306
S. Yang, C. Xu, G. Röpke et al., α decay to a doubly magic core in the quartetting wave function approach. Phys. Rev. C 101, 024316 (2020). doi: 10.1103/PhysRevC.101.024316http://doi.org/10.1103/PhysRevC.101.024316
I. Reichstein, F.B. Malik, Dependence of 16O + 16O potential on the density ansatz. Phys. Lett. B 37, 344 (1971). doi: 10.1016/0370-2693(71)90197-3http://doi.org/10.1016/0370-2693(71)90197-3
L.H. Chien, D. T. Khoa, D.C. Cuong et al., Consistent mean-field description of the 12C + 12C optical potential at low energies and the astrophysical S factor. Phys. Rev. C 98, 064604 (2018). doi: 10.1103/PhysRevC.98.064604http://doi.org/10.1103/PhysRevC.98.064604
D.T. Khoa, L.H. Chien, D.C. Cuong et al., Mean-field description of heavy-ion scattering at low energies and fusion. Nucl. Sci. Tech. 29, 183 (2018). doi: 10.1007/s41365-018-0517-7http://doi.org/10.1007/s41365-018-0517-7
G.R. Satchler, W.G. Love, Folding model potentials from realistic interactions for heavy-ion scattering. Phys. Rep. 55, 183 (1979). doi: 10.1016/0370-1573(79)90081-4http://doi.org/10.1016/0370-1573(79)90081-4
D.T. Khoa, α-nucleus optical potential in the double-folding model. Phys. Rev. C 63, 034007 (2001). doi: 10.1103/PhysRevC.63.034007http://doi.org/10.1103/PhysRevC.63.034007
I.I. Gontcher, D.J. Hinde, M. Dasgupta et al., Double folding nucleus-nucleus potential applied to heavy-ion fusion reactions. Phys. Rev. C 69, 024610 (2004). doi: 10.1103/PhysRevC.69.024610http://doi.org/10.1103/PhysRevC.69.024610
A. Bohr, B.R. Mottelson, Nuclear Structure. World Scientific, Singapore, 1988, Vol.1.
V. Yu. Denisov, Multidimensional Model of Cluster Radioactivity. Phys. Rev. C 88, 044608 (2013). doi: 10.1103/PhysRevC.88.044608http://doi.org/10.1103/PhysRevC.88.044608
V. Yu. Denisov, Nucleus-nucleus potential with shell correction contribution and deep sub-barrier fusion of heavy nuclei. Phys. Rev. C 89, 044604 (2014). doi: 10.1103/PhysRevC.89.044604http://doi.org/10.1103/PhysRevC.89.044604
C.L. Jiang, A.M. Stefanini, H. Esbensen et al., Fusion hindrance for a positive-Q-value system 24Mg + 30Si. Phys. Rev. Lett. 113, 022701 (2014). doi: 10.1103/PhysRevLett.113.022701http://doi.org/10.1103/PhysRevLett.113.022701
W.M. Seif, H. Mansour, Systematics of nucleon density distributions and neutron skin of nuclei. Int. J. Mod. Phys. E 24, 1550083 (2015). doi: 10.1142/S0218301315500834http://doi.org/10.1142/S0218301315500834
C.L. Jiang, K.E. Rehm, R.V.F. Janssens et al., Influence of nuclear structure on sub-barrier hindrance in Ni + Ni fusion. Phys. Rev. Lett. 93, 012701 (2004). doi: 10.1103/PhysRevLett.93.012701http://doi.org/10.1103/PhysRevLett.93.012701
A. Morsad, J.J. Kolata, R.J. Tighe et al., Sub-barrier fusion of28,30Si with 24,26Mg. Phys. Rev. C 41, 988 (1990). doi: 10.1103/PhysRevC.41.988http://doi.org/10.1103/PhysRevC.41.988
E.F. Aguilera, P. Rosales, E. Martinez-Quiroz et al., New γ-ray measurements for 12C + 12C sub-Coulomb fusion: Toward data unification. Phys. Rev. C 73, 064601 (2006). doi: 10.1103/PhysRevC.73.064601http://doi.org/10.1103/PhysRevC.73.064601
R.L. Cooper, A.W. Steiner, E.F. Brown, Possible resonances in the 12C + 12C fusion rate and superburst ignition. Astrophysical Journal 702, 660 (2009). doi: 10.1088/0004-637X/702/1/660http://doi.org/10.1088/0004-637X/702/1/660
A. Tumino, C. Spitaleri, M. La Cognata et al., An increase in the 12C + 12C fusion rate from resonances at astrophysical energies. Nature 557, 687 (2018), doi: 10.1038/s41586-018-0149-4http://doi.org/10.1038/s41586-018-0149-4
Y. Taniguchi, M. Kimura, 12C + 12C fusion S-factor from a full-microscopic nuclear model. Phys. Lett. B 823, 136790 (2021). doi: 10.1016/j.physletb.2021.136790http://doi.org/10.1016/j.physletb.2021.136790
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution