Chun-Hui Dong, Kai-Yong Liao, Rui-Yang Xu, et al. Design and preliminary test of tritiated water online detector system based on plastic scintillators. [J]. Nuclear Science and Techniques 33(10):128(2022)
DOI:
Chun-Hui Dong, Kai-Yong Liao, Rui-Yang Xu, et al. Design and preliminary test of tritiated water online detector system based on plastic scintillators. [J]. Nuclear Science and Techniques 33(10):128(2022) DOI: 10.1007/s41365-022-01115-w.
Design and preliminary test of tritiated water online detector system based on plastic scintillators
摘要
Abstract
In this study, an online detector system based on plastic scintillators is designed to monitor the activity of tritiated water in the liquid effluents of nuclear power plants. The feasibility of the detector is verified via simulation on Geant4, and the optimal detector structure size is determined. A back-end electronics system is designed, and an experimental measurement platform for β-rays based on a ,40,KCl solution is constructed. Thirteen ,40,KCl solutions with different activities ranging from 10 to 4500 Bq/L are measured, and 1300 V is determined as the optimal operating high voltage of the photomultiplier tubes. A linear fit is performed in 10-min counts, and the maximum linear goodness of fit (,R,2,) achieved is 0.9992. Long-term stability measurements are performed for two detectors, one filled with air and the other with a ,40,KCl solution exhibiting an activity of 2000 Bq/L. The relative deviation of the counts of the detector system every 10 min is 0.998% when the ,40,KCl solution is used, and the maximum Gaussian ,R,2, of the counts is 0.9849.
关键词
Keywords
Tritiated waterGeant4Plastic scintillatorElectronics system
references
D.P. Li, Z.Q. Pan, Radiation protection handbook, 1st edn. (Atomic Energy Press, Beijing, 1990), pp. 118-120. (in Chinese)
Z.L. Chen, S.M. Peng, H. Chen et al., Development of a novel system for monitoring tritium in gaseous form. Nucl. Sci. Tech. 26(2), 020602 (2015) doi: 10.13538/j.1001-8042/nst.26.020602http://doi.org/10.13538/j.1001-8042/nst.26.020602.
L. Zhu, Radiochemistry, 1st edn. (Atomic Energy Press, Beijing, 1985), p. 315. (in Chinese)
H.Y. Yang, Tritium Safety and Protection, 1st edn. (Atomic Energy Press, Beijing, 1997), p. 37. (in Chinese)
F. Liu, Y.H. Li, J. Lin, A hydrogen and oxygen isotope study of groundwater in the yongding river drainage of Beijing and its environmental significance. Acta Geosci. Sin. 29(2), 161-166 (2008). doi: 10.3321/j.issn:1006-3021.2008.02.005http://doi.org/10.3321/j.issn:1006-3021.2008.02.005 (in Chinese)
D. Normile, Japan plans to release Fukushima's wastewater into the ocean. ScienceMag. 2021. doi: 10.1126/science.abi9880http://doi.org/10.1126/science.abi9880
Z.G. Ren, B.T. Hu, Z.P. Zhao et al., Digital coincidence acquisition applied to portable β liquid scintillation counting device. Nucl. Sci. Tech. 24(3), 030401 (2013). doi: 10.13538/j.1001-8042/nst.2013.03.012http://doi.org/10.13538/j.1001-8042/nst.2013.03.012
I. Jakonic´, N. Todorovic´, J. Nikolov et al. Optimization of low-level LS counter quantulus 1220 for tritium determination in water samples. Radiat. Phys. Chem. 98, 69-76 (2014). doi: 10.1016/j.radphyschem.2014.01.012http://doi.org/10.1016/j.radphyschem.2014.01.012
C. Varlam, I. Stefanescu, O.G. Duliu et al. Applying direct liquid scintillation counting to low level tritium measurement. Appl.Radiat. Isot. 67(5), 812-816 (2009). doi: 10.1016/j.apradiso.2009.01.023http://doi.org/10.1016/j.apradiso.2009.01.023
F. Verrezen, H. Loots, C. Hurtgen, A performance comparison of nine selected liquid scintillation cocktails. Appl. Radiat. Isot. 66(6), 1038-1042 (2008). doi: 10.1016/j.apradiso.2008.02.050http://doi.org/10.1016/j.apradiso.2008.02.050
Z.L. Chen, S.X. Xing, H.Y. Wang et al., The effect of vial type and cocktail quantity on tritium measurement in LSC. Appl. Radiat. Isot. 68(9), 1855-1858 (2010). doi: 10.1016/j.apradiso.2010.04.015http://doi.org/10.1016/j.apradiso.2010.04.015
R. Coulon, R. Broda, P. Cassette et al., The international reference system for pure β-particle emitting radionuclides: an investigation of the reproducibility of the results. Metrologia 57(3), 035009 (2020). doi: 10.1088/1681-7575/ab7e7bhttp://doi.org/10.1088/1681-7575/ab7e7b
F. Priester, M. Klein, Tritium activity measurements with a PhotomultipliEr in Liquids-The TRAMPEL experiment. Fus. Eng. Des. 109-111, 1356-1359 (2016). doi: 10.1016/j.fusengdes.2015.12.027http://doi.org/10.1016/j.fusengdes.2015.12.027
F. Priester, A new device for activity measurement of tritiated water. Fus. Sci. Technol. 71(4), 600-604 (2017). doi: 10.1080/15361055.2017.1289585http://doi.org/10.1080/15361055.2017.1289585
X.B. Li, Z.H. Wang, H.W. Lv et al., Measurement of the energy of fast neutrons in the presence of gamma rays using a NaI (TI) and a plastic scintillator. Nucl. Instrum. Meth. A 976, 164257 (2020). doi: 10.1016/j.nima.2020.164257http://doi.org/10.1016/j.nima.2020.164257
M.M. Nasseri, Q.-L. Ma, Z.-J. Yin et al., Monte-Carlo simulation to determine detector efficiency of plastic scintillating fiber. Nucl. Sci. Tech. 15(5), 308-311(2004). doi: 10.1088/1009-1963/13/2/003http://doi.org/10.1088/1009-1963/13/2/003.
R.Y. Xu, C.H. Dong, X.Q. Mao et al., Simulation results of the online tritiated water measurement system. Nucl. Sci. Tech. 32(11), 126 (2021). doi: 10.1007/s41365-021-00964-1http://doi.org/10.1007/s41365-021-00964-1
H.-K. Wu, C. Li, A ROOT-based detector test system. Nucl. Sci. Tech. 32(10), 115 (2021) doi: 10.1007/s41365-021-00952-5http://doi.org/10.1007/s41365-021-00952-5.
P. Juyal, K.-L. Giboni, X.-D. Ji et al., On proportional scintillation in very large liquid xenon detectors. Nucl. Sci. Tech. 31(9), 93 (2020). doi: 10.1007/s41365-020-00797-4http://doi.org/10.1007/s41365-020-00797-4
H. Liu, C.H. Dong, X.Y. Yang et al., A high-bandwidth low current transimpedance amplification circuit. J. Instrumen. 16(11), P11032 (2021). doi: 10.1088/1748-0221/16/11/P11032http://doi.org/10.1088/1748-0221/16/11/P11032
Gamma-, neutron-, and muon-induced environmental background simulations for 100Mo-based bolometric double-beta decay experiment at Jinping Underground Laboratory
Study on the gamma-rays and neutrons energy response optimization of a scintillating fiber detector for EAST with Geant4
Design optimization of plastic scintillators with wavelength-shifting fibers and silicon photomultiplier readouts in the top veto tracker of the JUNO-TAO experiment
Resolution analysis of thermal neutron radiography based on accelerator-driven compact neutron source
Performance of compact plastic scintillator strips with wavelength shifting fibers using a photomultiplier tube or silicon photomultiplier readout
Related Author
No data
Related Institution
Key Laboratory of Nuclear Physics and Ion‑Beam Application (MOE), Institute of Modern Physics, Fudan University
University of California
Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences
University of Science and Technology of China
Institute of Energy, Hefei Comprehensive National Science Center (Anhui Energy Laboratory)