1.School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
2.Institute of Modern Physics, Fudan University, Shanghai 200433, China
3.School of Math and Physics, University of South China, Hengyang 421001, China
4.College of Physics and Electronics, Central South University, Changsha 410083, China
5.National Exemplary Base for International Sci & Tech. Collaboration of Nuclear Energy and Nuclear Safety, University of South China, Hengyang 421001, China
6.Cooperative Innovation Center for Nuclear Fuel Cycle Technology & Equipment, University of South China, Hengyang 421001, China
7.Key Laboratory of Low Dimensional Quantum Structures and Quantum Control, Hunan Normal University, Changsha 410081, China
† liuhongming13@126.com
‡ wuxijun1980@yahoo.cn
§ lixiaohuaphysics@126.com
Scan for full text
De-Xing Zhu, Yang-Yang Xu, Hong-Ming Liu, et al. Two-proton radioactivity of the excited state within the Gamowlike and modified Gamow-like models. [J]. Nuclear Science and Techniques 33(10):122(2022)
De-Xing Zhu, Yang-Yang Xu, Hong-Ming Liu, et al. Two-proton radioactivity of the excited state within the Gamowlike and modified Gamow-like models. [J]. Nuclear Science and Techniques 33(10):122(2022) DOI: 10.1007/s41365-022-01116-9.
In this study, we systematically investigated the two-proton (2p) radioactivity half-lives from the excited state of nuclei near the proton drip line within the Gamow-like model (GLM) and modified Gamow-like model (MGLM). The calculated results were highly consistent with the theoretical values obtained using the unified fission model [Chin. Phys. C 45, 124105 (2021)], effective liquid drop model, and generalized liquid drop model [Acta Phys. Sin 71, 062301 (2022)],. Furthermore, utilizing the GLM and MGLM, we predicted the 2p radioactivity half-lives from the excited state for some nuclei that are not yet available experimentally. Simultaneously, by analyzing the calculated results from these theoretical models, it was found that the half-lives are strongly dependent on ,Q,2p, and ,,.
2p radioactivityGamow-like modelHalf-lifeExcited state
X. D. Sun, P. Guo, X. H. Li, Systematic study of α decay half-lives for even-even nuclei within a two-potential approach. Phys. Rev. C 93, 034316 (2016). doi: 10.1103/PhysRevC.93.034316http://doi.org/10.1103/PhysRevC.93.034316
X.D. Sun, P. Guo, X. H. Li, Systematic study of favored α-decay half-lives of closed shell odd-A and doubly-odd nuclei related for the ground and isomeric states, respectively. Phys. Rev. C 94, 024338 (2016). doi: 10.1103/PhysRevC.94.024338http://doi.org/10.1103/PhysRevC.94.024338
C.Z. Shi, Y.G. Ma, α-clustering effect on flows of direct photons in heavy-ion collisions. Nucl. Sci. Tech. 32, 66 (2021). doi: 10.1007/s41365-021-00897-9http://doi.org/10.1007/s41365-021-00897-9
M. Ji, C. Xu, Quantum anti-zeno effect in nuclear β decay. Chin. Phys. Lett. 38, 032301 (2021). doi: 10.1088/0256-307X/38/3/032301http://doi.org/10.1088/0256-307X/38/3/032301
C.W. Ma, H.L. Wei, X. Q. Liu et al., Nuclear fragments in projectile fragmentation reactions. Prog. Part. Nucl. Phys. 121, 103911 (2021). doi: 10.1016/j.ppnp.2021.103911http://doi.org/10.1016/j.ppnp.2021.103911
C. W. Ma, J. P. Wei, X. X. Chen et al., Precise machine learning models for fragment production in projectile fragmentation reactions by using Bayesian neural networks. Chin. Phys. C 46, 074104 (2022). doi: 10.1088/1674-1137/ac5efbhttp://doi.org/10.1088/1674-1137/ac5efb
L. L. Zhu, B. Wang, M. Wang et al., Energy and centrality dependence of light nuclei production in relativistic heavy-ion collisions. Nucl. Sci. Tech. 33, 45 (2022). doi: 10.1007/s41365-022-01028-8http://doi.org/10.1007/s41365-022-01028-8
C. Shen, L. Yan, Recent development of hydrodynamic modeling in heavy-ion collisions. Nucl. Sci. Tech. 31, 122 (2020). doi: 10.1007/s41365-020-00829-zhttp://doi.org/10.1007/s41365-020-00829-z
F. Zhang, J. Su, Probing neutron-proton effective mass splitting using nuclear stopping and isospin mix in heavy-ion collisions in GeV energy region. Nucl. Sci. Tech. 31, 77 (2020). doi: 10.1007/s41365-020-00787-6http://doi.org/10.1007/s41365-020-00787-6
Y. J. Wang, F. H. Guan, X. Y. Diao et al., CSHINE for studies of HBT correlation in heavy ion reactions. Nucl. Sci. Tech. 32 4 (2021). doi: 10.1007/s41365-020-00842-2http://doi.org/10.1007/s41365-020-00842-2
P. J. Woods, C.N. Davids, Nuclei beyond the proton drip-line. Annu. Rev. Nucl. Part. Sci. 47, 541 (1977). doi: 10.1146/annurev.nucl.47.1.541http://doi.org/10.1146/annurev.nucl.47.1.541
A.A. Sonzogni, Proton radioactivity in Z > 50 nuclides. Nucl. Data. Sheets 95, 1 (2002). doi: 10.1006/ndsh.2002.0001http://doi.org/10.1006/ndsh.2002.0001
D.S. Delion, R.J. Liotta, R. Wyss, Systematics of proton emission. Phys. Rep. 424, 113 (2006). doi: 10.1103/PhysRevLett.96.072501http://doi.org/10.1103/PhysRevLett.96.072501
M. Pfützner, M. Karny, L. V. Grigorenko et al., Radioactive decays at limits of nuclear stability. Rev. Mod. Phys. 84, 567 (2012). doi: 10.1103/RevModPhys.84.567http://doi.org/10.1103/RevModPhys.84.567
D. Pathak, P. Singh, H. Parshad, H. Kaur, Sudhir. R. Jain, Quest for two-proton radioactivity. Eur. Phys. J. Plus 137, 272 (2022). doi: 10.1140/epjp/s13360-022-02354-xhttp://doi.org/10.1140/epjp/s13360-022-02354-x
L. Zhou, D. Q. Fang, Effect of source size and emission time on the p-p momentum correlation function in the two-proton emission process. Nucl. Sci. Tech 32, 52 (2020). doi: 10.1007/s41365-020-00759-whttp://doi.org/10.1007/s41365-020-00759-w
L. Zhou, S.M. Wang, D.Q. Fang et al., Recent progress in two-proton radioactivity. Nucl. Sci. Tech. 33, 105 (2022). doi: 10.1007/s41365-022-01091-1http://doi.org/10.1007/s41365-022-01091-1
B. Blank, J. Giovinazzo, M. Pfützner, First observation of two-proton radioactivity from an atomic nucleus. Comptes Rendus Physique 4, 521 (2003). doi: 10.1016/S1631-0705(03)00051-3http://doi.org/10.1016/S1631-0705(03)00051-3
Y. B. Zel’dovich, The existence of new isotopes of light nuclei and the equation of state of neutrons. Sov. Phys. JETP 11, 812 (1960). http://www.jetp.ras.ru/cgi-bin/dn/e_011_04_0812.pdfhttp://www.jetp.ras.ru/cgi-bin/dn/e_011_04_0812.pdf
V. M. Galitsky, V. F. Cheltsov, Two-proton radioactivity theory. Nucl. Phys. 56, 86 (1964). https://sci-hub.wf/10.1016/0029-5582(64)90455-9https://sci-hub.wf/10.1016/0029-5582(64)90455-9 doi: 10.1016/0029-5582(64)90455-9http://doi.org/10.1016/0029-5582(64)90455-9
B. Blank, M. Ploszajczak, Two-proton radioactivity. Rep. Prog. Phys. 71, 046301 (2008). doi: 10.1088/0034-4885/71/4/046301http://doi.org/10.1088/0034-4885/71/4/046301
A. Kruppa and W. Nazarewicz, Gamow and R-matrix approach to proton emitting nuclei. Phys. Rev. C 69, 054311 (2004). doi: 10.1103/PhysRevC.69.054311http://doi.org/10.1103/PhysRevC.69.054311
S. M. Wang, W. Nazarewicz, Puzzling Two-Proton Decay of 67Kr. Phys. Rev. Lett. 120, 212502 (2018). doi: 10.1103/PhysRevLett.120.212502http://doi.org/10.1103/PhysRevLett.120.212502
M. Pfützner, E. Badura, C. Bingham et al., First evidence for the two-proton decay of 45Fe. Eur. Phys. J. A 14, 279 (2002). doi: 10.1140/epja/i2002-10033-9http://doi.org/10.1140/epja/i2002-10033-9
J. Giovinazzo, B. Blank, M Chartier et al., Two-proton radioactivity of 45Fe. Phys. Rev. Lett. 89, 102501 (2002). doi: 10.1103/PhysRevLett.89.102501http://doi.org/10.1103/PhysRevLett.89.102501
B. Blank, A. Bey, G. Canchel et al., First observation of 54Zn and its decay by two-proton emission. Phys. Rev. Lett. 94, 232501 (2005). doi: 10.1103/PhysRevLett.94.232501http://doi.org/10.1103/PhysRevLett.94.232501
P. Ascher, L. Audirac, N. Adimi et al., Direct Observation of two Protons in the Decay of 54Zn. Phys. Rev. Lett 107, 102502 (2011). doi: 10.1103/PhysRevLett.107.102502http://doi.org/10.1103/PhysRevLett.107.102502
I. Mukha, K. Sümmerer, L. Acosta et al., Observation of two-Proton Radioactivity of 19Mg by Tracking the Decay Products. Phys. Rev. Lett. 99, 182501 (2007). doi: 10.1103/PhysRevLett.99.182501http://doi.org/10.1103/PhysRevLett.99.182501
I. Mukha, E. Roeckl, L. Batist, et al., Proton-proton correlations observed in two-proton radioactivity of 94Ag. Nature 439, 298 (2006). doi: 10.1038/nature04453http://doi.org/10.1038/nature04453
B. Blank, M. Chartier, S. Czajkowski et al., Discovery of doubly magic 48Ni. Phys. Rev. Lett. 84, 1116 (2000). doi: 10.1103/PhysRevLett.84.1116http://doi.org/10.1103/PhysRevLett.84.1116
M. Pomorski, M. Pfützner, W. Dominik et al., First observation of two-proton radioactivity in 48Ni. Phys. Rev. C 83, 061303(R) (2011). doi: 10.1103/PhysRevC.83.061303http://doi.org/10.1103/PhysRevC.83.061303
T. Goigoux, P. Ascher, B. Blank et al., Two-Proton Radioactivity of 67Kr. Phys. Rev. Lett. 117, 162501 (2016). doi: 10.1103/PhysRevLett.117.162501http://doi.org/10.1103/PhysRevLett.117.162501
J. Jänecke, The emission of protons from light neutron-deficient nuclei. Nucl. Phys. 61, 326 (1965). https://sci-hub.wf/10.1016/0029-5582(65)90907-7https://sci-hub.wf/10.1016/0029-5582(65)90907-7 doi: 10.1016/0029-5582(65)90907-7http://doi.org/10.1016/0029-5582(65)90907-7
M. D. Cable, J. Honkanen, R. F. Parry et al., Discovery of Beta-Delayed Two-Proton Radioactivity: 22Al. Phys. Rev. Lett 50, 404 (1983). doi: 10.1103/PhysRevLett.50.404http://doi.org/10.1103/PhysRevLett.50.404
B. Blank, F. Boué, S. Andriamonje et al., Spectroscopic studies of the βp and β2p decay of 23Si. Z. Phys. A 357, 247 (1997). doi: 10.1007/s002180050241http://doi.org/10.1007/s002180050241
J. Honkanen, M/ D. Cable, R. F. Parry et al., Beta-delayed two-proton decay of 26P. Phys. Lett. B 133, 146 (1983). doi: 10.1016/0370-2693(83)90547-6http://doi.org/10.1016/0370-2693(83)90547-6
V. Borrel, J.C. Jacmart and F. Pougheon, 31Ar and 27S: Beta-delayed two-proton emission and mass excess. Nucl. Phys. A 531, 353 (1991). doi: 10.1016/0375-9474(91)90616-Ehttp://doi.org/10.1016/0375-9474(91)90616-E
C. Dossat, N. Adimi, F. Aksouh et al., The decay of proton-rich nuclei in the mass A=36-56 region. Nucl. Phys. A 792, 18 (2007). doi: 10.1016/j.nuclphysa.2007.05.004http://doi.org/10.1016/j.nuclphysa.2007.05.004
C. R. Bain, P. J. Woods, R. Coszach et al., Two proton emission induced via a resonance reaction. Phys. Lett. B 373, 35 (1996). doi: 10.1016/0370-2693(96)00109-8http://doi.org/10.1016/0370-2693(96)00109-8
M. J. Chromik, B. A. Brown, M. Fauerbach et al., Excitation and decay of the first excited state of 17Ne. Phys. Rev. C 55, 1676 (1997). doi: 10.1103/PhysRevC.55.1676http://doi.org/10.1103/PhysRevC.55.1676
J. Gómez del Campo, A. Galindo-Uribarri, J. R. Beene et al., Decay of a resonance in by the simultaneous emission of two protons. Phys. Rev. Lett. 86, 43 (2001). doi: 10.1103/PhysRevLett.86.43http://doi.org/10.1103/PhysRevLett.86.43
G. Raciti, G. Cardella, M. De Napoli et al., Experimental evidence of 2He decay from 18Ne excited states. Phys. Rev. Lett. 100, 192503 (2008). doi: 10.1103/PhysRevLett.100.192503http://doi.org/10.1103/PhysRevLett.100.192503
M. J. Chromik, P. G. Thirolf, M. Thoennessen et al., Two-proton spectroscopy of low-lying states in 17Ne. Phys. Rev. C 66, 024313 (2002). doi: 10.1103/PhysRevC.66.024313http://doi.org/10.1103/PhysRevC.66.024313
T. Zerguerras, B. Blank, Y. Blumenfeld et al., Study of light proton-rich nuclei by complete kinematics measurements. Eur. Phys. J. A 20, 389 (2004). doi: 10.1140/epja/i2003-10176-1http://doi.org/10.1140/epja/i2003-10176-1
Y. G. Ma, D. Q. Fang, X. Y. Sun et al., Different mechanism of two-proton emission from proton-rich nuclei 23Al and 22Mg. Phys. Lett. B 743, 306 (2015). doi: 10.1016/j.physletb.2015.02.066http://doi.org/10.1016/j.physletb.2015.02.066
D. Q. Fang, Y. G. Ma, X. Y. Sun et al., Proton-proton correlations in distinguishing the two-proton emission mechanism of 23Al and 22Mg. Phys. Rev. C 94, 044621 (2016). doi: 10.1103/PhysRevC.94.044621http://doi.org/10.1103/PhysRevC.94.044621
C. J. Lin, X. X. Xu, H. M. Jia et al., Experimental study of two-proton correlated emission from 29S excited states. Phys. Rev. C 80, 014310 (2009). doi: 10.1103/PhysRevC.80.014310http://doi.org/10.1103/PhysRevC.80.014310
X. X. Xu, C. J. Lin, H. M. Jia et al., Correlations of two protons emitted from excited states of 28S and 27P. Phys. Lett. B 727, 126 (2013). doi: 10.1016/j.physletb.2013.10.029http://doi.org/10.1016/j.physletb.2013.10.029
M. Gonalves, N. Teruya, O. Tavares et al., Two-proton emission half-lives in the effective liquid drop model. Phys. Lett. B 774, 14 (2017). doi: 10.1016/j.physletb.2017.09.032http://doi.org/10.1016/j.physletb.2017.09.032
O. A. P. Tavares, E. L. Medeiros, A calculation model to half-life estimate of two-proton radioactive decay process. Eur. Phys. J. A 54, 65 (2018). doi: 10.1140/epja/i2018-12495-4http://doi.org/10.1140/epja/i2018-12495-4
Y. Z. Wang, J. P. Cui, Y. H. Gao et al., Two-proton radioactivity of exotic nuclei beyond proton drip-line. Commun. Theor. Phys. 73, 075301 (2021). doi: 10.1088/1572-9494/abfa00http://doi.org/10.1088/1572-9494/abfa00
D. X. Zhu, H. M. Liu, Y. Y. Xu et al., Two-proton radioactivity within Coulomb and proximity potential model. Chin. Phys. C 46, 044106 (2022). doi: 10.1088/1674-1137/ac45efhttp://doi.org/10.1088/1674-1137/ac45ef
D. S. Delion, R. J. Liotta and R. Wyss, Simple approach to two-proton emission. Phys. Rev. C 87, 034328 (2013). doi: 10.1103/PhysRevC.87.034328http://doi.org/10.1103/PhysRevC.87.034328
L. V. Grigorenko, R. C. Johnson, I. Mukha et al., Two-proton radioactivity and three-body decay: General problems and theoretical approach. Phys. Rev. C 64, 054002 (2001). doi: 10.1103/PhysRevC.64.054002http://doi.org/10.1103/PhysRevC.64.054002
A. Adel and A. R. Abdulghany, Proton radioactivity and α-decay of neutron-deficient nuclei. Physica. Scripta 96 125314 (2021). doi: 10.1088/1402-4896/ac33f6http://doi.org/10.1088/1402-4896/ac33f6
W. Nan, B. Guo, C. J. Lin et al., First proof-of-principle experiment with the post-accelerated isotope separator on-line beam at BRIF: measurement of the angular distribution of 23Na + 40Ca elastic scattering. Nucl. Sci. Tech. 32, 53 (2021). doi: 10.1007/s41365-021-00889-9http://doi.org/10.1007/s41365-021-00889-9
C. Chen, Y. J. Li, H. Zhang et al., Preparation of large-area isotopic magnesium targets for the 25Mg(p,γ)26Al experiment at JUNA. Nucl. Sci. Tech. 31 91 (2020). doi: 10.1007/s41365-020-00800-yhttp://doi.org/10.1007/s41365-020-00800-y
H. C. Manjunatha, N. Sowmya, P. S. Damodara Gupta et al., Investigation of decay modes of superheavy nuclei. Nucl. Sci. Tech. 32, 130 (2021). doi: 10.1007/s41365-021-00967-yhttp://doi.org/10.1007/s41365-021-00967-y
L. V. Grigorenko, M. V. Zhukov, Two-proton radioactivity and three-body decay. II. Exploratory studies of lifetimes and correlations. Phys. Rev. C 68, 054005 (2003). doi: 10.1103/PhysRevC.68.054005http://doi.org/10.1103/PhysRevC.68.054005
I. Sreeja, M. Balasubramaniam, An empirical formula for the half-lives of exotic two-proton emission. Eur. Phys. J. A 55, 33 (2019). doi: 10.1140/epja/i2019-12694-5http://doi.org/10.1140/epja/i2019-12694-5
B. A. Brown, Hybrid model for two-proton radioactivity. Phys. Rev. C 100, 054332 (2019). doi: 10.1103/PhysRevC.100.054332http://doi.org/10.1103/PhysRevC.100.054332
B. J. Cole, Systematics of proton and diproton separation energies for light nuclei. Phys. Rev. C 56, 1866 (1997). doi: 10.1103/PhysRevC.56.1866http://doi.org/10.1103/PhysRevC.56.1866
A. Zdeb, M. Warda and K. Pomorski, Half-lives for α and cluster radioactivity within a Gamow-like model. Phys. Rev. C 87, 024308 (2013). doi: 10.1103/PhysRevC.87.024308http://doi.org/10.1103/PhysRevC.87.024308
A. Zdeb, M. Warda, C. M. Petrache and K. Pomorski, Proton emission half-lives within a Gamow-like model. Eur. Phys. J. A 52, 323 (2016). doi: 10.1140/epja/i2016-16323-7http://doi.org/10.1140/epja/i2016-16323-7
H. M. Liu, X. Pan, Y. T. Zou et al., Systematic study of two-proton radioactivity within a Gamow-like model. Chin. Phys. C 45, 044110 (2021). doi: 10.1088/1674-1137/abe10fhttp://doi.org/10.1088/1674-1137/abe10f
H. M. Liu, Y. T. Zou, X. Pan et al., Systematic study of two-proton radioactivity half-lives based on a modified Gamow-like model. Int. J. Mod. Phys. E 30, 2150074 (2021). doi: 10.1142/S0218301321500749http://doi.org/10.1142/S0218301321500749
S. G. Nilsson, Binding states of individual nucleons in strongly deformed nuclei, Dan. Mat.Fys. Medd 29, 16 (1955). https://cds.cern.ch/record/212345/files/p1.pdfcds.cern.ch/record/212345/files/p1.pdfhttps://cds.cern.ch/record/212345/files/p1.pdfcds.cern.ch/record/212345/files/p1.pdf
B. A. Brown, Diproton decay of nuclei on the proton drip line. Phys. Rev. 43, R1513 (1991). doi: 10.1103/PhysRevC.43.R1513http://doi.org/10.1103/PhysRevC.43.R1513
N. Anyas-Weiss, J.C. Cornell, P.S. Fisher et al, Nuclear structure of light nuclei using the selectivity of high energy transfer reactions with heavy ions. Phys. Rep. 12, 201 (1974). doi: 10.1016/0370-1573(74)90045-3http://doi.org/10.1016/0370-1573(74)90045-3
J. P. Cui, Y.H. Gao, Y.Z. Wang et al., Two-proton radioactivity within a generalized liquid drop model. Phys. Rev. C 101, 014301 (2020). doi: 10.1103/PhysRevC.101.014301http://doi.org/10.1103/PhysRevC.101.014301
H. M. Liu, Y. T. Zou, X. Pan et al., New Geiger-Nuttall law for two-proton radioactivity. Chin. Phys. C 45 024108 (2021). doi: 10.1088/1674-1137/abd01ehttp://doi.org/10.1088/1674-1137/abd01e
A. Kankainen, V. V. Elomaa, L. Batist et al., Systematics of cluster-radioactivity-decay constants as suggested by microscopic calculations. Phys. Rev. Lett., 61, 1930 (1988). doi: 10.1103/PhysRevLett.61.1930http://doi.org/10.1103/PhysRevLett.61.1930
B. Durand and L. Durand, Duality for heavy-quark systems. Phys. Rev. D 23, 1092 (1981). doi: 10.1103/PhysRevD.23.1092http://doi.org/10.1103/PhysRevD.23.1092
R. L. Hall, Envelope representations for screened Coulomb potentials. Phys. Rev. A 32, 14 (1985). doi: 10.1103/PhysRevA.32.14http://doi.org/10.1103/PhysRevA.32.14
R. L. Hall, R. Dutt, K. Chowdhury et al., An improved calculation for screened Coulomb potentials in Rayleigh-Schrodinger perturbation theory. J. Phys. A: Math. Gen. 18, 1379 (1985). doi: 10.1088/0305-4470/18/9/020http://doi.org/10.1088/0305-4470/18/9/020
J. Lindhard and P. G. Hansen, Atomic effects in low-energy beta decay: The case of tritium. Phys. Rev. Lett. 57, 965 (1986). doi: 10.1103/PhysRevLett.57.965http://doi.org/10.1103/PhysRevLett.57.965
P. Pyykkö and J. Jokisaari, Spectral density analysis of nuclear spin-spin coupling: I. Hulthén potential LCAO model for JX-H in hydride XH4 Chem. Phys. 10 293 (1975). doi: 10.1016/0301-0104(75)87043-1http://doi.org/10.1016/0301-0104(75)87043-1
J. J. Morehead, Asymptotics of radial wave equations. J. Math. Phys 36, 5431 (1955). doi: 10.1063/1.531270http://doi.org/10.1063/1.531270
F. Z. Xing, J. P. Cui, Y. Z. Wang et al., Two-proton radioactivity of ground and excited states within a unified fission model. Chin. Phys. C 45, 124105 (2021). doi: 10.1088/1674-1137/ac2425http://doi.org/10.1088/1674-1137/ac2425
F. Z. Xing, J. P. Cui, Y. Z. Wang et al., Two-proton emission from excited states of proton-rich nuclei. Acta Phys Sin 71 062301 (2022). doi: 10.7498/aps.71.20211839http://doi.org/10.7498/aps.71.20211839
X. Zhou, M. Wang, Y. H. Zhang et al., Charge resolution in the isochronous mass spectrometry and the mass of 51Co. Nucl. Sci. Tech. 32, 37 (2021). doi: 10.1007/s41365-021-00876-0http://doi.org/10.1007/s41365-021-00876-0
Z. P. Gao, Y. J. Wang, H. L. Lü et al., Machine learning the nuclear mass. Nucl. Sci. Tech. 32, 109 (2021). doi: 10.1007/s41365-021-00956-1http://doi.org/10.1007/s41365-021-00956-1
X. C. Ming, H. F. Zhang, R. R. Xu et al., Nuclear mass based on the multi-task learning neural network method. Nucl. Sci. Tech. 33, 48 (2022). doi: 10.1007/s41365-022-01031-zhttp://doi.org/10.1007/s41365-022-01031-z
D. Benzaid, S. Bentridi, A. Kerraci et al., Bethe-Weizsäcker semiempirical mass formula coefficients 2019 update based on AME2016. Nucl. Sci. Tech. 31, 9 (2020). doi: 10.1007/s41365-019-0718-8http://doi.org/10.1007/s41365-019-0718-8
H.L. Liu, D.D. Han, P. Ji et al., Reaction rate weighted multilayer nuclear reaction network. Chin. Phys. Lett. 37, 112601 (2020). doi: 10.1088/0256-307X/37/11/112601http://doi.org/10.1088/0256-307X/37/11/112601
H.Y. Lu, C.H. Li, B.B. Chen, State classification via a random-walk-based quantum neural network. Chin. Phys. Lett. 39, 050301 (2022). doi: 10.1088/0256-307X/39/5/050301http://doi.org/10.1088/0256-307X/39/5/050301
H.Y. Lu, C.H. Li, B.B. Chen et al., Network-initialized Monte Carlo based on generative neural networks. Chin. Phys. Lett. 39, 050701 (2022). doi: 10.1088/0256-307X/39/5/050701http://doi.org/10.1088/0256-307X/39/5/050701
H.Y. Lu, C. H. Li, B.B. Chen et al., Neural network representations of quantum many-body states. Sci. China Phys. Mech. Astron. 63, 210312 (2020). doi: 10.1007/s11433-018-9407-5http://doi.org/10.1007/s11433-018-9407-5
X.R. Ma, Z.C. Tu, S. J. Ran, Deep learning quantum states for Hamiltonian estimation. Chin. Phys. Lett. 38, 110301 (2021). doi: 10.1088/0256-307X/38/11/110301http://doi.org/10.1088/0256-307X/38/11/110301
A. Kankainen, V. V. Elomaa, L. Batist et al., Mass measurements and implications for the energy of the high-spin isomer in 94Ag. Phys. Rev. Lett. 101, 142503 (2008). doi: 10.1103/PhysRevLett.101.142503http://doi.org/10.1103/PhysRevLett.101.142503
0
Views
3
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution