1.Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
2.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
chenjian@zjlab.org.cn
lengyongbin@zjlab.org.cn
Scan for full text
Jian Chen, Yong-Bin Leng, Lu-Yang Yu, et al. Optimization of the cavity beam-position monitor system for the Shanghai Soft X-ray Free-Electron Laser user facility. [J]. Nuclear Science and Techniques 33(10):124(2022)
Jian Chen, Yong-Bin Leng, Lu-Yang Yu, et al. Optimization of the cavity beam-position monitor system for the Shanghai Soft X-ray Free-Electron Laser user facility. [J]. Nuclear Science and Techniques 33(10):124(2022) DOI: 10.1007/s41365-022-01117-8.
To achieve high-efficiency operation of the high-gain free-electron laser (FEL), the electron beams and radiated photon beams need to be overlapped precisely and pass through the entire undulator section. Therefore, a high-resolution beam-position monitor (BPM) is required. A cavity BPM (CBPM) with a resonant cavity structure was developed and used in the Shanghai Soft X-ray FEL (SXFEL) test facility and can achieve a position resolution of < 1 μm. The construction and operation of the SXFEL user facility also bring about higher requirements for beam-position measurement. In this case, the factors that affect the performance of the CBPM system were further analyzed. These included the amplitude and phase stability of the local oscillator, stability of the trigger signal, performance of the radio frequency front-end, signal processing electronics, and signal processing algorithms. Based on the upgrade and optimization of the system, a beam test platform was built at the end of the linear acceleration section of the SXFEL, and the experimental results show that the position resolution of the system can reach 177 nm at a bunch charge of 500 pC, and the dynamic range is controlled within ± 300 μM, and the relative measurement uncertainty of the bunch charge can reach 0.021%, which are significant improvements compared to the attributes of the previous system.
Cavity BPMSXFELSystem optimizationPosition resolutionMeasurement uncertaintyAlgorithm
U. Bergmann, J. Corlett, S. Dierker et al., Science and technology of future light sources: A white paper. SLAC National Accelerator Lab (No. SLAC-R-917), (2009). https://www.osti.gov/biblio/947109https://www.osti.gov/biblio/947109 doi: 10.2172/947109http://doi.org/10.2172/947109
Z. Zhao, D. Wang, Q. Gu et al., SXFEL: A soft X-ray free electron laser in China. Synchrotron Radiation News 30(6), 29-33 (2017). doi: 10.1080/08940886.2017.1386997http://doi.org/10.1080/08940886.2017.1386997
C. Feng, D. Huang, H. Deng et al., A single stage EEHG at SXFEL for narrow-bandwidth soft X-ray generation. Sci. Bulletin 61(15), 1202-1212 (2016). https://www.sciencedirect.com/science/article/pii/S2095927316300664https://www.sciencedirect.com/science/article/pii/S2095927316300664 doi: 10.1007/s11434-016-1140-9http://doi.org/10.1007/s11434-016-1140-9
T. Tanaka, H. Kitamura, T. Shintake, Consideration on the BPM alignment tolerance in X-ray FELs. Nucl. Instrum. Meth. A 528(1), 172-178 (2004). https://www.sciencedirect.com/science/article/pii/S0168900204006941https://www.sciencedirect.com/science/article/pii/S0168900204006941 doi: 10.1016/j.nima.2004.04.040http://doi.org/10.1016/j.nima.2004.04.040
V. Sargsyan, Comparison of stripline and cavity beam position monitors. Tech. Rep. 2004-03. https://cds.cern.ch/record/732356/files/cm-p00047837.pdfhttps://cds.cern.ch/record/732356/files/cm-p00047837.pdf
D.H. Whittum, Y. Kolomensky, Analysis of an asymmetric resonant cavity as a beam monitor. AIP Rev. Scientific Instruments 70, 2300 (1999). doi: 10.1063/1.1149756http://doi.org/10.1063/1.1149756
X.Y. Liu, F.F. Wu, T.Y. Zhou et al., Design and offline testing of a resonant stripline beam position monitor for the IRFEL project at NSRL. Nucl. Sci. Tech. 31, 57 (2020). doi: 10.1007/s41365-020-00778-7http://doi.org/10.1007/s41365-020-00778-7
R. Lill, W. Norum, L. Morrison et al., Design and performance of the LCLS cavity bpm system. in: 2007 IEEE Particle Accelerator Conference (PAC), IEEE, 2007, pp. 4366-4368. https://ieeexplore.ieee.org/abstract/document/4440010https://ieeexplore.ieee.org/abstract/document/4440010 doi: 10.1109/PAC.2007.4440010http://doi.org/10.1109/PAC.2007.4440010
S. Smith, S. Hoobler, R.G. Johnson, et al., Commissioning and performance of LCLS cavity BPMs. in: 2009 IEEE Particle Accelerator Conference (PAC), 2009, pp. 754-756. https://accelconf.web.cern.ch/PAC2009/papers/tu3grc05.pdfhttps://accelconf.web.cern.ch/PAC2009/papers/tu3grc05.pdf
H. Maesaka, H. Ego, S. Inoue et al., Sub-micron resolution RF cavity beam position monitor system at the SACLA xfel facility. Nucl. Instrum. Meth. A 696, 66-74 (2012). https://www.sciencedirect.com/science/article/pii/S0168900212009916https://www.sciencedirect.com/science/article/pii/S0168900212009916 doi: 10.1016/j.nima.2012.08.088http://doi.org/10.1016/j.nima.2012.08.088
M. Stadler, R. Baldinger, R. Ditter et al., Beam test results of undulator cavity BPM electronics for the European XFEL. Proceedings of IBIC2012, Tsukuba, Japan (JACoW, Tsukuba, Japan, 2012, pp. 404-408). https://accelconf.web.cern.ch/IBIC2012/papers/tupa27.pdfhttps://accelconf.web.cern.ch/IBIC2012/papers/tupa27.pdf
M. Stadler, R. Baldinger, R. Ditter et al., Low-Q cavity BPM electronics for E-XFEL, Flash-II and Swiss-FEL, Proceedings of IBIC2014, Monterey, CA, USA (JACoW, Monterey, CA, USA, 2014, pp. 670-674). https://accelconf.web.cern.ch/ibic2014/papers/wepd12.pdfhttps://accelconf.web.cern.ch/ibic2014/papers/wepd12.pdf
B. Keil, R. Baldinger, R. Ditter et al., First beam commissioning experience with the SwissFEL cavity BPM system. Proceedings of IBIC2017, Grand Rapids, MI, USA (JACoW, Grand Rapids, MI, USA, 2017, pp. 251-254). http://jacow.org/ibic2017/papers/tupcf17.pdfhttp://jacow.org/ibic2017/papers/tupcf17.pdf doi: 10.18429/JACoW-IBIC2017-TUPCF17http://doi.org/10.18429/JACoW-IBIC2017-TUPCF17
Y. Inoue, H. Hayano, Y. Honda et al., Development of a high-resolution cavity-beam position monitor. Phys. Rev. Accel. Beams 11, 062801 (2008). doi: 10.1103/PhysRevSTAB.11.062801http://doi.org/10.1103/PhysRevSTAB.11.062801
Y. I. Kim, R. Ainsworth, A. Aryshev et al., Cavity beam position monitor system for the Accelerator Test Facility 2. Phys. Rev. Accel. Beams 15, 042801 (2012). doi: 10.1103/physrevstab.15.042801http://doi.org/10.1103/physrevstab.15.042801
J. Chen, Y.-B. Leng, L.-Y. Yu et al., Beam test results of high Q CBPM prototype for SXFEL. Nucl. Sci. Tech. 28, 51 (2017). doi: 10.1007/s41365-017-0195-xhttp://doi.org/10.1007/s41365-017-0195-x
J. Chen, R.-X. Yuan, Y.-B. Leng et al., Cavity beam position monitor system for Shanghai Soft X-ray Free Electron Laser. Atomic Energy Science and Technology 54, 1931-1939 (2020). doi: 10.7538/yzk.2019.youxian.0697http://doi.org/10.7538/yzk.2019.youxian.0697 (in Chinese)
R. Lorenz, Cavity beam position monitors. AIP Conference Proceedings 451, 53 (1998). doi: 10.1063/1.57039http://doi.org/10.1063/1.57039
S. Walston, S. Boogert, C. Chung et al., Performance of a high resolution cavity beam position monitor system. Nucl. Instrum. Meth. A 578, 1-22 (2007). https://www.sciencedirect.com/science/article/pii/S0168900207007905https://www.sciencedirect.com/science/article/pii/S0168900207007905 doi: 10.1016/j.nima.2007.04.162http://doi.org/10.1016/j.nima.2007.04.162
W. Schnell, Common-mode rejection in resonant microwave position monitors for linear colliders. Tech. Rep. (1988). https://cds.cern.ch/record/189450/files/198808171.pdfhttps://cds.cern.ch/record/189450/files/198808171.pdf
J. Chen, Y.B. Leng, L.Y. Yu et al., Study of the crosstalk evaluation for cavity BPM. Nucl. Sci. Tech. 29, 83 (2018). doi: 10.1007/s41365-018-0418-9http://doi.org/10.1007/s41365-018-0418-9
ANALOG DEVICES Ltd, https://www.analog.com/cn/parametricsearch/10826/https://www.analog.com/cn/parametricsearch/10826/
L. Lai, Y. Leng, X. Yi et al., DBPM signal processing with field programmable gate arrays. Nucl. Sci. Tech. 22(3), 129-133 (2013). doi: 10.13538/j.1001-8042/nst.22.129-133http://doi.org/10.13538/j.1001-8042/nst.22.129-133
L. Lai, F. Chen, J. Chen et al., Design and performance of digital BPM processor for DCLS and SXFEL. Proc. of IPAC2017, Copenhagen, Denmark (JACoW, Copenhagen, Denmark, 2017, pp. 338-340). http://jacow.org/ipac2017/papers/mopab092.pdfhttp://jacow.org/ipac2017/papers/mopab092.pdf doi: 10.18429/JACoW-IPAC2017-MOPAB092http://doi.org/10.18429/JACoW-IPAC2017-MOPAB092
L. Lai, F. Chen, Y. Leng et al., The Development and applications of digital BPM signal processor on SSRF. Proc. of IBIC2018, Shanghai, China (JACoW, Shanghai, China, 2018, pp. 147-149). http://jacow.org/ibic2018/papers/mopc16.pdfhttp://jacow.org/ibic2018/papers/mopc16.pdf doi: 10.18429/JACoW-IBIC2018-MOPC16http://doi.org/10.18429/JACoW-IBIC2018-MOPC16
L. Lai, F. Chen, J. Chen et al., Upgrade of digital BPM processor at DCLS and SXFEL. Proc. of IPAC2018, Vancouver, BC, Canada (JACoW, Vancouver, BC, Canada, 2018, pp. 4807-4810). http://jacow.org/ipac2018/papers/thpml071.pdfhttp://jacow.org/ipac2018/papers/thpml071.pdf doi: 10.18429/JACoW-IPAC2018-THPML071http://doi.org/10.18429/JACoW-IPAC2018-THPML071
L.W. Lai, Y.B. Leng, Y.B. Yan et al., Development and application of digital beam position measurement processor for FEL. Nucl. Tech, 41(7), 070402(2018). doi: 10.11889/j.0253-3219.2018.hjs.41.070402http://doi.org/10.11889/j.0253-3219.2018.hjs.41.070402 (in Chinese)
J. Chen, S. Cao, Y. Leng et al., Study of the optimal amplitude extraction algorithm for cavity BPM. Nucl. Instrum. Meth. A 1012, 165627 (2021). https://www.sciencedirect.com/science/article/pii/S0168900221006124https://www.sciencedirect.com/science/article/pii/S0168900221006124 doi: 10.1016/j.nima.2021.165627http://doi.org/10.1016/j.nima.2021.165627
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution