1.Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
2.School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
3.School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
shwzeng@impcas.ac.cn
Scan for full text
Jie Wang, Da-Qing Gao, Wan-Zeng Shen, et al. Lifetime estimation of IGBT module using square-wave loss discretization and power cycling test. [J]. Nuclear Science and Techniques 33(10):133(2022)
Jie Wang, Da-Qing Gao, Wan-Zeng Shen, et al. Lifetime estimation of IGBT module using square-wave loss discretization and power cycling test. [J]. Nuclear Science and Techniques 33(10):133(2022) DOI: 10.1007/s41365-022-01118-7.
The insulated gate bipolar transistor (IGBT) module is one of the most age-affected components in the switch power supply, and its reliability prediction is conducive to timely troubleshooting and reduction in safety risks and unnecessary costs. The pulsed current pattern of the accelerator power supply is different from other converter applications; therefore, this study proposed a lifetime estimation method for IGBT modules in pulsed power supplies for accelerator magnets. The proposed methodology was based on junction temperature calculations using square-wave loss discretization and thermal modeling. Comparison results showed that the junction temperature error between the simulation and IR measurements was less than 3%. An AC power cycling test under real pulsed power supply applications was performed via offline wear-out monitoring of the tested power IGBT module. After combining the IGBT4 PC curve and fitting the test results, a simple corrected lifetime model was developed to quantitatively evaluate the lifetime of the IGBT module, which can be employed for the accelerator pulsed power supply in engineering. This method can be applied to other IGBT modules and pulsed power supplies.
IGBT moduleJunction temperaturePower cycling testLifetime predictionPower loss discretization
H. Xie, K. Gu, Y. Wei et al., A noninvasive ionization profile monitor for transverse beam cooling and orbit oscillation study in HIRFL-CSR. Nucl. Sci. Tech. 31, 40 (2020). doi: 10.1007/s41365-020-0743-7http://doi.org/10.1007/s41365-020-0743-7
Y. Cong, S.F. Xu, W.X. Zhou et al., Low-level radio-frequency system upgrade for the IMP Heavy Ion Reach Facility in Lanzhou (HIRFL). Nucl. Instrum. Meth. A. 925, 76-86 (2019). doi: 10.1016/j.nima.2019.01.086http://doi.org/10.1016/j.nima.2019.01.086
F.J. Wu, D.Q. Gao, C.F. Shi et al., A new type of accelerator power supply based on voltage-type space vector PWM rectification technology. Nucl. Instrum. Meth. A. 826, 1-5 (2016). doi: 10.1016/j.nima.2016.04.054http://doi.org/10.1016/j.nima.2016.04.054
A. Hillman, J. Carwardine, G. Sprau, Magnet power supply reliability at the Advanced Photon Source. PACS2001. Proceedings of the 2001 Particle Accelerator Conference (Cat. No.01CH37268)5, 3657-3659 (2001). doi: 10.1109/PAC.2001.988210http://doi.org/10.1109/PAC.2001.988210
P. Bellomo, C. E. Rago, C. M. Spencer et al., A novel approach to increasing the reliability of accelerator magnets. IEEE TAS. 10, 284-287 (2000). doi: 10.1109/77.828230http://doi.org/10.1109/77.828230
D. Siemaszko, M. Speiser, S. Pittet, Reliability models applied to a system of power converters in particle accelerators. EPE 2011. 1-9 (2011)
R. Isermann. Reliability, Availability and Maintainability (RAM). (Springer, Berlin Heidelberg, 2006. doi: 10.1007/3-540-30368-5_3http://doi.org/10.1007/3-540-30368-5_3
L.S. Peng, W.Z. Shen, A.H. Feng et al., Method for obtaining junction temperature of power semiconductor devices combining computational fluid dynamics and thermal network. Nucl. Instrum. Meth. A. 976, 164260 (2020). doi: 10.1016/j.nima.2020.164260http://doi.org/10.1016/j.nima.2020.164260
X. Du, G.X. Li, P.J. Sun et al., Reliability evaluation of wind power converters considering the fundamental frequency junction temperature fluctuations. Transactions of China Electrotechnical Society 30 (10), 258-265 (2015). doi: 10.19595/j.cnki.1000-6753.tces.2015.10.035http://doi.org/10.19595/j.cnki.1000-6753.tces.2015.10.035 (in Chinese)
X.P. Wang, Z.G. Li, F. Yao, Power loss calculation and junction temperature detection of IGBT devices for modular multilevel valve. Proceedings of the CSEE, 34 (08), 1636-1646 (2019), doi: 10.19595/j.cnki.1000-6753.tces.180635http://doi.org/10.19595/j.cnki.1000-6753.tces.180635 (in Chinese)
B. Ren, E.P. Deng, Y.Z. Huang, Review on the reliability research of high power IGBT devices. Smart Grid, 9, 5 (2019), doi: 10.12677/SG.2019.95024http://doi.org/10.12677/SG.2019.95024 (in Chinese)
X.P. Wang, Z.G Li, F. Yao, Simplified estimation of the fundamental frequency junction temperature fluctuation for IGBTs in modular multilevel converters. Proceedings of the CSEE, 40 (18), 5805-5816 (2020). doi: 10.13334/j.0258-8013.pcsee.200495http://doi.org/10.13334/j.0258-8013.pcsee.200495 (in Chinese)
V. Smet, F. Forest, J.-J Huselstein et al., Ageing and failure modes of IGBT modules in high-temperature power cycling. IEEE T. Industrial Appl. 58, 4931-4941 (2011). doi: 10.1109/TIE.2011.2114313http://doi.org/10.1109/TIE.2011.2114313
L. Peng, D. Gao, W. Shen et al., IGBT Junction temperature estimation in water cooling power modules. 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC). 1-6 (2018). doi: 10.1109/PEAC.2018.8590487http://doi.org/10.1109/PEAC.2018.8590487
Y. Avenas, L. Dupont, Z. Khatir, Temperature measurement of power semiconductor devices by thermo-sensitive electrical parameters—A review. IEEE. T. Power. Electr. 27, 3081-3092 (2012). doi: 10.1109/TPEL.2011.2178433http://doi.org/10.1109/TPEL.2011.2178433
Y. Zhang, H. Wang, Z. Wang et al., A simplification method for power device thermal modeling with quantitative error analysis. IEEE Journal of Emerging and Selected Topics in Power Electronics. 7, 1649-1658 (2019). doi: 10.1109/JESTPE.2019.2916575http://doi.org/10.1109/JESTPE.2019.2916575
Y.P. Li, L.W. Zhou, P.J. Sun et al., Review of accelerated aging methods for IGBT power modules. J. Power Supply 14 (06), 122-135 (2016). doi: 10.13234/j.issn.2095-2805.2016.6.122http://doi.org/10.13234/j.issn.2095-2805.2016.6.122 (in Chinese)
A. Wintrich, U. Nicolai, W. Tursky et al., Application manual power semiconductors, 2nd edn. (Semikron International GmbH, Nuremberg, 2015), pp. 274-277
K. Ma, M. Liserre, F. Blaabjerg et al., Thermal loading and lifetime estimation for power device considering mission profiles in wind power converter. IEEE. T. Power. Electr. 30, 590-602 (2015). doi: 10.1109/TPEL.2014.2312335http://doi.org/10.1109/TPEL.2014.2312335
M. Held, P. Jacob, G. Nicoletti et al., Fast power cycling test of IGBT modules in traction application. Proceedings of Second International Conference on Power Electronics and Drive Systems. 1, 425-430 (1997). doi: 10.1109/PEDS.1997.618742http://doi.org/10.1109/PEDS.1997.618742
R. Bayerer, T. Herrmann, T. Licht et al., Model for power cycling lifetime of IGBT modules - various factors influencing lifetime. 5th International Conference on Integrated Power Electronics Systems. 1-6. (2008)
M. Ciappa, W. Fichtner, Lifetime prediction of IGBT modules for traction applications. 2000 IEEE International Reliability Physics Symposium Proceedings. 28, 210-216 (2000). doi: 10.1109/RELPHY.2000.843917http://doi.org/10.1109/RELPHY.2000.843917
Infineon, Datasheet FF600R12ME4,(2013), https://www.infineon.com/cms/en/product/power/igbt/igbt-modules/ff600r12me4/https://www.infineon.com/cms/en/product/power/igbt/igbt-modules/ff600r12me4/
P. D. Reigosa, H. Wang, Y. Yang et al., Prediction of bond wire fatigue of IGBTs in a PV inverter under a long-term operation. IEEE. T. Power. Electr. 31, 7171-7182 (2016). doi: 10.1109/TPEL.2015.2509643http://doi.org/10.1109/TPEL.2015.2509643
H. Soliman, H. Wang, B. Gadalla et al., Condition monitoring for DC-link capacitors based on artificial neural network algorithm. 2015 IEEE 5th International Conference on Power Engineering, Energy and Electrical Drives (POWERENG), 587-591 (2015). doi: 10.1109/PowerEng.2015.7266382http://doi.org/10.1109/PowerEng.2015.7266382
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution