1.Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
2.University of Science and Technology of China, Hefei 230026, China
3.Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
4.School of Mechanical and Vehicle Engineering, West Anhui University, Lu'an 237012, China
* gqzhong@ipp.ac.cn
Scan for full text
Wei-Kun Chen, Li-Qun Hu, Guo-Qiang Zhong, et al. Optimization study and design of scintillating fiber detector for D-T neutron measurements on EAST with Geant4. [J]. Nuclear Science and Techniques 33(11):139(2022)
Wei-Kun Chen, Li-Qun Hu, Guo-Qiang Zhong, et al. Optimization study and design of scintillating fiber detector for D-T neutron measurements on EAST with Geant4. [J]. Nuclear Science and Techniques 33(11):139(2022) DOI: 10.1007/s41365-022-01123-w.
Real-time monitoring of the 14-MeV D-T fusion neutron yield is urgently required for the triton burnup study on the Experimental Advanced Superconducting Tokamak (EAST). In this study, we developed an optimal design of a fast-neutron detector based on the scintillating fiber (Sci-Fi) to provide D-T neutron yield through Geant4 simulation. The effect on the detection performance is concerned when changing the number of the Sci-Fis embedded in the probe head, minimum distance between the fibers, length of the fibers, or substrate material of the probe head. The maximum number of scintillation photons generated by the n/γ source particles and output by the light guide within an event (event: the entire simulation process for one source particle) was used to quantify the n/γ resolution of the detector as the main basis. And the intrinsic detection efficiency was used as another evaluation criterion. The results demonstrate that the optimal design scheme is to use a 5-cm probe head whose substrate material is pure aluminum, in which 463 Sci-Fis with the same length of 5 cm are embedded, and the minimum distance between the centers of the two fibers is 2 mm. The optimized detector exhibits clear directionality in the simulation, which is in line with the expectation and experimental data provided in the literature. This study presents the variation trends of the performance of the Sci-Fi detector when its main parameters change, which is beneficial for the targeted design and optimization of the Sci-Fi detector used in a specific radiation environment.
Sci-Fi detectorOptimal designn/γ resolutionIntrinsic detection efficiencyGeant4
J.R. Smith, R.K. Fisher, J.S. Leffler et al., Time- resolved 14-MeV neutron detector for triton confinement studies. Rev. Sci. Instrum. 57, 1780-1782 (1986). doi: 10.1063/1.1139180http://doi.org/10.1063/1.1139180.
H.H. Duong, W.W. Heidbrink, Confinement of fusion produced MeV ions in the DIII-D tokamak. Nucl. Fusion 33, 211-224 (1993). doi: 10.1088/0029-5515/33/2/i03http://doi.org/10.1088/0029-5515/33/2/i03.
P. Batistoni, M. Martone, M. Pillon et al., Measurements of triton burnup in low Q discharges in the FT tokamak. Nucl. Fusion 27, 1040-1043 (1987). doi: 10.1088/0029-5515/27/6/017http://doi.org/10.1088/0029-5515/27/6/017.
P. Batistoni, E. Bittoni, M. Haegi, Triton confinement as inferred from fusion produced neutron measurements in the FT tokamak. Nucl. Fusion 29, 673-679 (1989). doi: 10.1088/0029-5515/29/4/011http://doi.org/10.1088/0029-5515/29/4/011
J.S. McCauley, J.D. Strachan, Measurement of DT neutron emission from TFTR with helium‐4 proportional recoil counters. Rev. Sci. Instrum. 63, 4536-4538 (1992). doi: 10.1063/1.1143712http://doi.org/10.1063/1.1143712.
C.W. Barnes, H.S. Bosch, H.W. Hendel et al., Triton burnup measurements and calculations on TFTR. Nucl. Fusion 38, 597-618 (1998). doi: 10.1088/0029-5515/38/4/310http://doi.org/10.1088/0029-5515/38/4/310.
F.B. Marcus, J.M. Adams, B. Balet et al., Neutron emission profile measurements during the 1st tritium experiments at jet. Nucl. Fusion 33, 1325-1344 (1993). doi: 10.1088/0029-5515/33/9/i08http://doi.org/10.1088/0029-5515/33/9/i08
G. Nemtsev, V. Amosov, S. Meshchaninov et al., Study of the triton-burnup process in different JET scenarios using neutron monitor based on CVD diamond. Rev. Sci. Instrum. 87, 11D835 (2016). doi: 10.1063/1.4962190http://doi.org/10.1063/1.4962190
W. Ullrich, H.S. Bosch, F. Hoenen, Application of a Si-diode detector for fusion product measurements in ASDEX Upgrade. Rev. Sci. Instrum. 68, 4434-4438 (1997). doi: 10.1063/1.1148410http://doi.org/10.1063/1.1148410
J. Jo, M.S. Cheon, K.-J. Chung et al., Sample design and gamma-ray counting strategy of neutron activation system for triton burnup measurements in KSTAR. Fusion Eng. Des. 109-111, 545-548 (2016). doi: 10.1016/j.fusengdes.2016.02.058http://doi.org/10.1016/j.fusengdes.2016.02.058
J. Jo, M. Cheon, J.Y. Kim et al., Triton burnup measurements in KSTAR using a neutron activation system. Rev. Sci. Instrum. 87, 11D828 (2016) doi: 10.1063/1.4961273http://doi.org/10.1063/1.4961273.
J. Jo, M. Cheon, J. Kim et al., Initial operation results of NE213 scintillation detector for time-resolved measurements on triton burnup in KSTAR. Rev. Sci. Instrum. 89, 10I118 (2018). doi: 10.1063/1.5039308http://doi.org/10.1063/1.5039308
S. Wu, An overview of the EAST project. Fusion Eng. Des. 82, 463-471 (2007). doi: 10.1016/j.fusengdes.2007.03.012http://doi.org/10.1016/j.fusengdes.2007.03.012.
K. Li, L. Hu, G. Zhong et al., Development of neutron activation system on EAST. Rev. Sci. Instrum. 91, 013503 (2020). doi: 10.1063/1.5126746http://doi.org/10.1063/1.5126746.
B. Hong, G.Q. Zhong, L.Q. Hu et al., Diagnostic of fusion neutrons on EAST tokamak using 4H-SiC detector. IEEE Trans. Nucl. Sci. 69, 639-644 (2022). doi: 10.1109/tns.2022.3146180http://doi.org/10.1109/tns.2022.3146180.
G.A. Wurden, R.E. Chrien, C.W. Barnes et al., Scintillating‐fiber 14 MeV neutron detector on TFTR during DT operation. Rev. Sci. Instrum. 66, 901-903 (1995) doi: 10.1063/1.1146200http://doi.org/10.1063/1.1146200.
T. Nishitani, M. Hoek, H. Harano et al., Triton burn-up study in JT-60U. Plasma Phys. Controlled Fusion 38, 355-364 (1996). doi: 10.1088/0741-3335/38/3/010http://doi.org/10.1088/0741-3335/38/3/010.
N. Pu, T. Nishitani, M. Isobe et al., Evaluation of scintillating-fiber detector response for 14 MeV neutron measurement. J. Instrum. 14, P10015 (2019). doi: 10.1088/1748-0221/14/10/p10015http://doi.org/10.1088/1748-0221/14/10/p10015.
K. Ogawa, M. Isobe, T. Nishitani et al., Time-resolved triton burnup measurement using the scintillating fiber detector in the Large Helical Device. Nucl. Fusion 58, 034002 (2018). doi: 10.1088/1741-4326/aaa585http://doi.org/10.1088/1741-4326/aaa585
N. Pu, T. Nishitani, K. Ogawa et al., Scintillating fiber detectors for time evolution measurement of the triton burnup on the Large Helical Device. Rev. Sci. Instrum. 89, 10I105 (2018). doi: 10.1063/1.5035290http://doi.org/10.1063/1.5035290
K. Ogawa, M. Isobe, S. Sangaroon et al., Time-resolved secondary triton burnup 14 MeV neutron measurement by a new scintillating fiber detector in middle total neutron emission ranges in deuterium large helical device plasma experiments. AAPPS Bull. 31, 20 (2021). doi: 10.1007/s43673-021-00023-2http://doi.org/10.1007/s43673-021-00023-2
T. Nishitani, M. Isobe, G.A. Wurden et al., Triton burnup measurements using scintillating fiber detectors on JT-60U. Fusion Eng. Des. 34-35, 563-566 (1997). doi: 10.1016/s0920-3796(96)00621-7http://doi.org/10.1016/s0920-3796(96)00621-7
E. Takada, T. Amitani, A. Fujisaki et al., Design optimization of a fast-neutron detector with scintillating fibers for triton burnup experiments at fusion experimental devices. Rev. Sci. Instrum. 90, 043503 (2019). doi: 10.1063/1.5074131http://doi.org/10.1063/1.5074131
K. Ogawa, M. Isobe, T. Nishitani et al., High detection efficiency scintillating fiber detector for time-resolved measurement of triton burnup 14 MeV neutron in deuterium plasma experiment. Rev. Sci. Instrum. 89, 10I101 (2018). doi: 10.1063/1.5032118http://doi.org/10.1063/1.5032118
N. Pu, T. Nishitani, M. Isobe et al., Evaluation for gamma-ray rejection ability affecting neutron discrimination property in scintillating-fiber type of fast neutron detector, Nucl. Instrum. Methods Phys. Res., Sect. A 969, 164000 (2020). doi: 10.1016/j.nima.2020.164000http://doi.org/10.1016/j.nima.2020.164000
P. Hu, Z.G. Ma, K. Zhao et al., Development of gated fiber detectors for laser-induced strong electromagnetic pulse environments, Nucl. Sci. Tech. 32, 58 (2021). doi: 10.1007/s41365-021-00898-8http://doi.org/10.1007/s41365-021-00898-8
S. Zhang, J.S. Li, Y.J. Su et al., A method for sharing dynamic geometry information in studies on liquid-based detectors. Nucl. Sci. Tech. 32, 21 (2021). doi: 10.1007/s41365-021-00852-8http://doi.org/10.1007/s41365-021-00852-8
H. Cheng, B.H. Sun, L.H. Zhu et al., Intrinsic background radiation of LaBr3(Ce) detector via coincidence measurements and simulations, Nucl. Sci. Tech. 31, 99 (2020), doi: 10.1007/s41365-020-00812-8http://doi.org/10.1007/s41365-020-00812-8
Y.J. Yao, C.J. Lin, L. Yang et al., The effects of beam drifts on elastic scattering measured by the large solid-angle covered detector array. Nucl. Sci. Tech. 32, 14 (2021), doi: 10.1007/s41365-021-00854-6http://doi.org/10.1007/s41365-021-00854-6
S. Agostinelli, J. Allison, K. Amako et al., Geant4—a simulation toolkit, Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250-303 (2003) doi: 10.1016/s0168-9002(03)01368-8http://doi.org/10.1016/s0168-9002(03)01368-8.
QGSP_BIC_HP. https://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsListGuide/html/reference_PL/QGSP_BERT.htmlhttps://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsListGuide/html/reference_PL/QGSP_BERT.html
Optical Photon Processes in GEANT4. https://geant4.web.cern.ch/sites/default/files/geant4/collaboration/workshops/users2002/talks/lectures/OpticalPhoton.pdfhttps://geant4.web.cern.ch/sites/default/files/geant4/collaboration/workshops/users2002/talks/lectures/OpticalPhoton.pdf
R.J. Zhou, G.Q. Zhong, L.Q. Hu et al., Development of gamma ray spectrometer with high energy and time resolutions on EAST tokamak. Rev. Sci. Instrum. 90, 123510 (2019) doi: 10.1063/1.5120843http://doi.org/10.1063/1.5120843
Kuraray scintillation fiber. http://kuraraypsf.jp/psf/index.htmlhttp://kuraraypsf.jp/psf/index.html
K. Ogawa, M. Isobe, H. Nuga et al., A study of beam ion and deuterium–deuterium fusion-born triton transports due to energetic particle-driven magnetohydrodynamic instability in the large helical device deuterium plasmas. Nucl. Fusion 61, 096035 (2021), doi: 10.1088/1741-4326/ac0d8ahttp://doi.org/10.1088/1741-4326/ac0d8a
E. Takada, A. Fujisaki, N. Nakada et al., Development of fast-neutron directional detector for fusion neutron profile monitor at LHD. Plasma Fusion Res. 11, 2405020 (2016) doi: 10.1585/pfr.11.2405020http://doi.org/10.1585/pfr.11.2405020
Z. Cheng, Y. Yu, G. Li et al., Measurement of attenuation length and light yield of plastic scintillating fiber with silicon photomultiplier. At. Energy Sci. Technol. 54, 340-347 (2020), doi: 10.7538/yzk.2019.youxian.0221http://doi.org/10.7538/yzk.2019.youxian.0221 (in Chinese)
I. Antcheva, M. Ballintijn, B. Bellenot et al., ROOT — A C++ framework for petabyte data storage, statistical analysis and visualization, Comput. Phys. Commun., 180 (2009) 2499-2512, doi: 10.1016/j.cpc.2009.08.005http://doi.org/10.1016/j.cpc.2009.08.005.
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution