1.School of Physics, Sun Yat-sen University, Guangzhou 510275, China
2.Joint Institute for Nuclear Research, Dubna 141980, Russia
3.Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
4.University of Chinese Academy of Sciences, Beijing 100049, China
5.State Key Laboratory of Particle Detection and Electronics, Beijing 100049, China
6.Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
7.State Key Laboratory of Particle Detection and Electronic, Beijing 100049, China
8.Institut für Experimentalphysik, Universität Hamburg, Hamburg 20148, Germany
† cheny73@mail.sysu.edu.cn
‡ wangw223@mail.sysu.edu.cn
Scan for full text
Rong Zhao, Nikolay Anfimov, Yu Chen, et al. Afterpulse measurement of JUNO 20-inch PMTs. [J]. Nuclear Science and Techniques 34(1):12(2023)
Rong Zhao, Nikolay Anfimov, Yu Chen, et al. Afterpulse measurement of JUNO 20-inch PMTs. [J]. Nuclear Science and Techniques 34(1):12(2023) DOI: 10.1007/s41365-022-01162-3.
In this study, we present the large photomultiplier tube (PMT) afterpulse measurement results obtained from the Jiangmen underground neutrino observatory (JUNO) experiment. A total of 11 dynode-PMTs (R12860) from the Hamamatsu company (Hamamatsu Photonics K.K. (HPK)) and 150 micro-channel plate PMTs (MCP-PMTs, GDB-6201) from the NNVT company (North Night Vision Technology Co., Ltd. (NNVT)) were tested. Subsequently, an afterpulse model was built according to the afterpulse time distribution and the probability of occurrence for these two types of PMTs. The average ratio of the total afterpulse charge with a delay between 0.5 μ s and 20 μ s to the primary pulse charge is ∼ 5.7% (13.2%) for the tested MCPPMTs (dynode-PMTs). The JUNO experiment will deploy 20,012 20-inch PMTs; this study will benefit detector simulation, event reconstruction, and data analysis regarding the JUNO experiment.
AfterpulseMCP-PMTJUNOdynode-PMT20-inch PMT
Z. Djurcic et al., [JUNO Collaboration], JUNO Conceptual Design Report. (2015). https://arxiv.org/abs/1508.07166https://arxiv.org/abs/1508.07166arXiv:1508.07166 [physics.ins-det]
F. An et al., [JUNO Collaboration], Neutrino Physics with JUNO. J. Phys. G 43, 03 (2016). doi: 10.1088/0954-3899/43/3/030401http://doi.org/10.1088/0954-3899/43/3/030401
JUNO Collaboration., JUNO physics and detector. Progress in Particle and Nuclear Physics. 123, 10 (2022). doi: 10.1016/j.ppnp.2021.103927http://doi.org/10.1016/j.ppnp.2021.103927
G. Zhu, J. Liu, Q. Wang et al., Ultrasonic positioning system for the calibration of central detector. Nucl. Sci. Tech. 30, 5 (2019). doi: 10.1007s41365-018-0530-xhttp://doi.org/10.1007s41365-018-0530-x
C. Yang, Y. Huang, J. Xu et al., Reconstruction of a muon bundle in the JUNO central detector. Nucl. Sci. Tech. 33, 59 (2022). doi: 10.1007s41365-022-01049-3http://doi.org/10.1007s41365-022-01049-3
Z. Li, Z. Qian, J. He et al., Improvement of machine learning-based vertex reconstruction for large liquid scintillator detectors with multiple types of PMTs. Nucl. Sci. Tech. 33, 93 (2022). doi: 10.1007s41365-022-01078-yhttp://doi.org/10.1007s41365-022-01078-y
P. Coates, A theory of afterpulse formation in photomultipliers and the prepulse height distribution. Journal of Physics D: Applied Physics 6, 1862 (1973). doi: 10.1088/0022-3727/6/16/306http://doi.org/10.1088/0022-3727/6/16/306
N. Akchurin, H. Kim, A study on ion initiated photomultiplier afterpulses. Nucl. Instrum. Meth. A 574, 121 (2007). doi: 10.1016/j.nima.2007.01.093http://doi.org/10.1016/j.nima.2007.01.093
K. Ma, W. Kang, J. Ahn et al., Time and amplitude of afterpulse measured with a large size photomultiplier tube. Nucl. Instrum. Meth. A 629, 93 (2011). doi: 10.1016/j.nima.2010.11.095http://doi.org/10.1016/j.nima.2010.11.095
J. Haser, F. Kaether, C. Langbrandtner et al., Afterpulse measurements of R7081 photomultipliers for the Double Chooz experiment. J Instrum. 8, 04 (2013). doi: 10.1088/1748-0221/8/04/P04029http://doi.org/10.1088/1748-0221/8/04/P04029
X. Zhao, Z. Tang, C. Li et al., Afterpulse measurement for 8-inch candidate PMTs for LHAASO. J Instrum. 11, 05 (2016). doi: 10.1088/1748-0221/11/05/T05002http://doi.org/10.1088/1748-0221/11/05/T05002
L. Campbell., Afterpulse measurement and correction, Review of Scientific Instruments 63, 5794 (1992). doi: 10.1063/1.1143365http://doi.org/10.1063/1.1143365
W. Luo, T. Yu, M. Chen et al., Generation of bright attosecond x-ray pulse trains via Thomson scattering from laser-plasma accelerators, Opt. Express 22, 32098-32106 (2014). doi: 10.1364/OE.22.032098http://doi.org/10.1364/OE.22.032098
Y. Chang, G. Huang, Y. Heng et al., The R&D of the 20 in. MCP-PMTs for JUNO. Nucl. Instrum. Meth. A 824, 143 (2016). doi: 10.106http://doi.org/10.106
H. Zhang, Z. Wang, W. Wang et al., Tested Performance of JUNO 20" PMTs. Journal of Physics: Conference Series 1468, 01 (2020). doi: 10.1088/1742-6596/1468/1/012197http://doi.org/10.1088/1742-6596/1468/1/012197
L. Chen, J. Tian, C. Liu et al., Optimization of the electron collection efficiency of a large area MCP-PMT for the JUNO experiment. Nucl. Instrum. Meth. A 827, 124 (2016).doi: 10.1016/j.nima.2016.04.100http://doi.org/10.1016/j.nima.2016.04.100
S.S. Stevens, J.W. Longworth, Late Output Pulses from Fast Photomultipliers. IEEE Transactions on Nuclear Science 19, 356 (1972).doi: 10.1109/TNS.1972.4326532http://doi.org/10.1109/TNS.1972.4326532
B. Lubsandorzhiev, R. Vasiljev, Y. Vyatchin et al., Photoelectron backscattering in vacuum phototubes. Nucl. Instrum. Meth. A 567, 12 (2006). doi: 10.1016/j.nima.2006.05.047http://doi.org/10.1016/j.nima.2006.05.047
B. Lubsandorzhiev, P. Pokhil, R. Vasiljev et al., Studies of prepulses and late pulses in the 8" electron tubes series of photomultipliers. Nucl. Instrum. Meth. A 442, 452 (2000).doi: 10.1016/S0168-9002(99)01272-3http://doi.org/10.1016/S0168-9002(99)01272-3
J. Brack, B. Delgado, J. Felde et al., Characterization of the Hamamatsu R11780 12 in. photomultiplier tube. Nucl. Instrum. Meth. A 712, 162 (2013). doi: 10.1016/j.nima.2013.02.022http://doi.org/10.1016/j.nima.2013.02.022
J. Wang, N. Anfimov, J. Guo et al., Database system for managing 20,000 20-inch PMTs at JUNO. NUCL SCI TECH 33, 24 (2022).doi: 10.1007/s41365-022-01009-xhttp://doi.org/10.1007/s41365-022-01009-x
N. Anfimov, Large photocathode 20-inch PMT testing methods for the JUNO experiment. J Instrum. 12, 06 (2017).doi: 10.1088/1748-0221/12/06/C06017http://doi.org/10.1088/1748-0221/12/06/C06017
B. Wonsak, A. Tietzsch, T. Sterr et al., A container-based facility for testing 20’000 20-inch PMTs for JUNO. J Instrum. 16, 08 (2021).doi: 10.1088/1748-0221/16/08/T08001http://doi.org/10.1088/1748-0221/16/08/T08001
A. Abusleme, T. Adam, S. Ahmad et al., Mass Testing and Characterization of 20-inch PMTs for JUNO. https://arxiv.org/abs/2205.08629https://arxiv.org/abs/2205.08629 arXiv:2205.08629 [physics.ins-det]
Thorlabs, Inc., https://www.thorlabs.comhttps://www.thorlabs.com. Accessed 20 May (2022)
T. Hakamata, H. Kume, K. Okano et al., Photomultiplier tubes: basics and applications. Hamamatsu Photonics KK Electron Tube Division. Hamamatsu City (2006). https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/etd/PMT_handbook_v3aE.pdfhttps://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/etd/PMT_handbook_v3aE.pdf. Accessed 20 May (2022)
Y. Zhang, Z. Wang, M. Li et al., Study of 20-inch PMTs dark count generated large pulses. https://arxiv.org/abs/2206.07456https://arxiv.org/abs/2206.07456 arXiv:2206.07456 [physics.ins-det]
C. Liu, M. Li, Z. Wang et al., Check on the features of potted 20-inch PMTs with 1F3 electronics prototype at Pan-Asia. https://arxiv.org/abs/2208.08264https://arxiv.org/abs/2208.08264 arXiv:2208.08264 [physics.ins-det]
Y. Cheng, S. Qian, Z. Ning et al., The high-speed after-pulse measurement system for PMT. J Instrum. 13, 05 (2018).doi: 10.1088/1748-0221/13/05/P05014http://doi.org/10.1088/1748-0221/13/05/P05014
S. Aiello, S. Akrame, F. Ameli et al., Characterisation of the Hamamatsu photomultipliers for the KM3NeT Neutrino Telescope. J Instrum. 13, 05 (2018). doi: 10.1088/1748-0221/13/05/P05035http://doi.org/10.1088/1748-0221/13/05/P05035
U. Akgun, A. Ayan, G. Aydin et al., Afterpulse timing and rate investigation of three different Hamamatsu Photomultiplier Tubes. J Instrum. 3, 01 (2008). doi: 10.1088/1748-0221/3/01/T01001http://doi.org/10.1088/1748-0221/3/01/T01001
F. Kaether, C. Langbrandtner, Transit time and charge correlations of single photoelectron events in R7081 photomultiplier tubes. J Instrum. 7, 09 (2012).doi: 10.1088/1748-0221/7/09/P09002http://doi.org/10.1088/1748-0221/7/09/P09002
K. Tudyka, G. Adamiec, A. Bluszcz, Simulation of He+ induced afterpulses in PMTs. Review of Scientific Instruments 87, 06 (2016). doi: 10.1063/1.4954511http://doi.org/10.1063/1.4954511
H. Zhang, Z. Wang, F. Luo et al., Gain and charge response of 20” MCP and dynode PMTs. J Instrum. 16, 08 (2021). doi: 10.1088/1748-0221/16/08/T08009http://doi.org/10.1088/1748-0221/16/08/T08009
Q. Wu, S. Qian, Y. Cao et al., The Status of the 20-inch MCP-PMT and its APR Test Result. Nuclear Science Symposium and Medical Imaging Conference 2019, 1 (2019). doi: 10.1109/NSS/MIC42101.2019.9059825http://doi.org/10.1109/NSS/MIC42101.2019.9059825
Q. Wu, S. Qian, L. Ma et al., Study of after-pulses in the 20-inch HQE-MCP-PMT for the JUNO experiment. Nucl. Instrum. Meth. A 1003, 16 (2021). doi: 10.1016/j.nima.2021.165351http://doi.org/10.1016/j.nima.2021.165351
P. Amaudruz, M. Batygov, B. Beltran et al., In-situ characterization of the Hamamatsu R5912-HQE photomultiplier tubes used in the DEAP-3600 experiment. Nucl. Instrum. Meth. A 922, 373 (2019).doi: 10.1016/j.nima.2018.12.058http://doi.org/10.1016/j.nima.2018.12.058
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution