1.College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, China
2.Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu 610059, China
3.Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei 230031, China
4.University of Science and Technology of China, Hefei 230026, China
* lisangang@cdut.edu.cn
Scan for full text
Zhi Zhou, San-Gang Li, Qing-Shan Tan, et al. Optimization method of Hadamard coding plate in γ-ray computational ghost imaging. [J]. Nuclear Science and Techniques 34(1):13(2023)
Zhi Zhou, San-Gang Li, Qing-Shan Tan, et al. Optimization method of Hadamard coding plate in γ-ray computational ghost imaging. [J]. Nuclear Science and Techniques 34(1):13(2023) DOI: 10.1007/s41365-022-01164-1.
Owing to the constraints on the fabrication of γ-ray coding plates with many pixels, few studies have been carried out on γ-ray computational ghost imaging. Thus, the development of coding plates with fewer pixels is essential to achieve γ-ray computational ghost imaging. Based on the regional similarity between Hadamard subcoding plates, this study presents an optimization method to reduce the number of pixels of Hadamard coding plates. First, a moving distance matrix was obtained to describe the regional similarity quantitatively. Second, based on the matrix, we used two ant colony optimization arrangement algorithms to maximize the reuse of pixels in the regional similarity area and obtain new compressed coding plates. With full sampling, these two algorithms improved the pixel utilization of the coding plate, and the compression ratio values were 54.2% and 58.9%, respectively. In addition, three undersampled sequences (the Harr, Russian dolls, and cake-cutting sequences) with different sampling rates were tested and discussed. With different sampling rates, our method reduced the number of pixels of all three sequences, especially for the Russian dolls and cake-cutting sequences. Therefore, our method can reduce the number of pixels, manufacturing cost, and difficulty of the coding plate, which is beneficial for the implementation and application of γ-ray computational ghost imaging.
γ-ray computational ghost imagingRegional similarityHadamard coding plate
Y. Bromberg, O. Katz, Y. Silberberg., Ghost imaging with a single detector. Phys. Rev. A. 79, 053840 (2009). doi: 10.1103/PHYSREVA.79.053840http://doi.org/10.1103/PHYSREVA.79.053840
G.M. Gibson, S.D. Johnson, MJ. Padgett. Single-pixel imaging 12 years on: a review. Optics express, 28, 28190-28208 (2020). doi: 10.1364/OE.403195http://doi.org/10.1364/OE.403195
J.H. Shapiro., Computational ghost imaging. Conference on Lasers and Electro-Optics/International Quantum Electronics Conference OSA Technical Digest (CD) (Optica Publishing Group, 2009), paper IThK7. doi: 10.1364/IQEC.2009.IThK7http://doi.org/10.1364/IQEC.2009.IThK7
D. Takhar, J.N. Laska, M.B. Wakin et al., A new compressive imaging camera architecture using optical-domain compression. Proc. SPIE 6065, Computational Imaging IV, 606509 (2006). doi:10.1117/12.659602
M. Chen, E. Li, S. Han., Application of multi-correlation-scale measurement matrices in ghost imaging via sparsity constraints. Applied Optics 53, 2924-2928 (2014). doi: 10.1364/AO.53.002924http://doi.org/10.1364/AO.53.002924
Y.H. He, A.X. Zhang, W.K. Yu et al., Energy-selective x-ray ghost imaging. Chinese Phys. Lett. 37, 044208 (2020). doi: 10.1088/0256-307X/37/4/044208http://doi.org/10.1088/0256-307X/37/4/044208
Y.H. He, A.X. Zhang, M.F. Li et al., High-resolution sub-sampling incoherent x-ray imaging with a single-pixel detector. APL Photonics 5, 5 (2020). doi: 10.1063/1.5140322http://doi.org/10.1063/1.5140322
Y.H. He, Y.Y. Huang, Z.R. Zeng et al., Single-pixel imaging with neutrons. Science Bulletin 66, 133-138 (2021). doi: 10.1016/j.scib.2020.09.030http://doi.org/10.1016/j.scib.2020.09.030
T. Zhang, L. Wang, J. Ning et al., Simulation of an imaging system for internal contamination of lungs using MPA-MURA coded-aperture collimator. Nucl. Sci. Tech. 32, 2 (2021). doi: 10.1007/S41365-021-00849-3http://doi.org/10.1007/S41365-021-00849-3
Y. Ren, P. He, H.L. Wang., Compressed sensing and Otsu’s method based binary CT image reconstruction technique in non-destructive detection. Nucl. Sci. Tech. 26, 5 (2015). doi: 10.13538/j.1001-8042/nst.26.050403http://doi.org/10.13538/j.1001-8042/nst.26.050403
M.F. Duarte, M.A. Davenport, D. Takhar et al, Single-pixel imaging via compressive sampling. IEEE Signal Processing Magazine 25, 83-91 (2008). doi: 10.1109/MSP.2007.914730http://doi.org/10.1109/MSP.2007.914730
S.J. Olivas, Y. Rachlin, L. Gu et al., Characterization of a compressive imaging system using laboratory and natural light scenes. Applied optics, 52, 4515-4526 (2013). doi: 10.1364/AO.52.004515http://doi.org/10.1364/AO.52.004515
P.G. Vaz, D. Amaral, L.R. Ferreira et al., Image quality of compressive single-pixel imaging using different Hadamard orderings. Optics express, 28, 11666-11681 (2020). doi: 10.1364/OE.387612http://doi.org/10.1364/OE.387612
W.K. Pratt, J. Kane, H.C. Andrews., Hadamard transform image coding. Proceedings of the IEEE, 57, 58-68 (1969). doi: 10.1109/PROC.1969.6869http://doi.org/10.1109/PROC.1969.6869
N. Radwell, K.J. Mitchell, G.M. Gibson et al., Single-pixel infrared and visible microscope. Optica 1, 285-289 (2014). doi: 10.1364/OPTICA.1.000285http://doi.org/10.1364/OPTICA.1.000285
M.J. Sun, L.T. Meng, M.P. Edgar et al., A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging. Scientific Reports 7, 3464 (2017). doi: 10.1038/S41598-017-03725-6http://doi.org/10.1038/S41598-017-03725-6
W. K. Yu, C. Cao, Y. Yang et al., Single-pixel imaging based on weight sort of the Hadamard basis. arXiv preprint arXiv:2203.04659.
W.K. Yu, Super sub-Nyquist single-pixel imaging by means of Cake-Cutting Hadamard basis sort. Sensors 19, 4122 (2019). doi: 10.3390/s19194122http://doi.org/10.3390/s19194122
M.F. Li, X.F. Mo, L.J. Zhao et al., Single-pixel remote imaging based on Walsh-Hadamard transform. Acta Physica Sinica 65, 064201 (2016). doi: 10.7498/aps.65.064201http://doi.org/10.7498/aps.65.064201
M.F. Li, L. Yan, R. Yang., Fast single-pixel imaging based on optimized reordering Hadamard basis. Acta Phys. Sin. 68, 064202 (2019). doi: 10.7498/aps.68.20181886http://doi.org/10.7498/aps.68.20181886
C. Zhang, S. Guo, J. Cao et al. Object reconstitution using pseudo-inverse for ghost imaging. Optics Express 22, 30063-30073 (2014). doi: 10.1364/OE.22.030063http://doi.org/10.1364/OE.22.030063
Z. Xue, X. Meng, X. Yang et al. Singular value decomposition ghost imaging. Optics Express 26, 12948-12958 (2018). doi: 10.1364/oe.26.012948http://doi.org/10.1364/oe.26.012948
M. Dorigo, G.D. Caro, L.M. Gambardella., Ant algorithms for discrete optimization. Artificial Life 5, 137-172 (1999) doi: 10.1162/106454699568728http://doi.org/10.1162/106454699568728
0
Views
2
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution