1.School of Engineering, London South Bank University, London, SE10 AA, UK
2.University of Petroleum and Energy Studies, Dehradun, 248007, India
* Goels@Lsbu.ac.uk
Scan for full text
Nirmal Kumar Katiyar, Saurav Goel. Recent progress and perspective on batteries made from nuclear waste. [J]. Nuclear Science and Techniques 34(3):33(2023)
Nirmal Kumar Katiyar, Saurav Goel. Recent progress and perspective on batteries made from nuclear waste. [J]. Nuclear Science and Techniques 34(3):33(2023) DOI: 10.1007/s41365-023-01189-0.
Sustainable energy sources are an immediate need to cope with the imminent issue of climate change the world is facing today. In particular, the long-lasting miniatured power sources that can supply energy continually to power handheld gadgets, sensors, electronic devices, unmanned airborne vehicles in space and extreme mining are some of the examples where this is an acute need. It is known from basic physics that radioactive materials decay over few years and some nuclear materials have their half-life until thousands of years. The past five decades of research have been spent harnessing the decay energy of the radioactive materials to develop batteries that can last until the radioactive reaction continues. Thus, an emergent opportunity of industrial symbiosis to make use of nuclear waste by using radioactive waste as raw material to develop batteries with long shelf life presents a great opportunity for sustainable energy resource development. However, the current canon of research on this topic is scarce. This perspective draws fresh discussions on the topic while highlighting future directions in this wealthy arena of research.
Sustainable energyNuclear waste batteryNanodiamond
B.J. van Ruijven, E. De Cian, I. Sue Wing, Amplification of future energy demand growth due to climate change. Nat. Commun. 10(1), 2762 (2019). doi: 10.1038/s41467-019-10399-3http://doi.org/10.1038/s41467-019-10399-3.
R. Winkelmann, A. Levermann, A. Ridgwell et al., Combustion of available fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet. Sci. Adv. 1(8), e1500589 (2015). doi: 10.1126/sciadv.1500589http://doi.org/10.1126/sciadv.1500589.
A. Goel, J.S. McCloy, R. Pokorny et al., Challenges with vitrification of Hanford High-Level Waste (HLW) to borosilicate glass – An overview. J. Non-Cryst. Solids X 4, 100033 (2019). doi: 10.1016/j.nocx.2019.100033http://doi.org/10.1016/j.nocx.2019.100033
M. Jacoby, As nuclear waste piles up, scientists seek the best long-term storage solutions, C&EN (Chemical & Engineering News), C&EN, 2020.
M. Wang, W.J. Huang, F.G. Kondev et al., The AME 2020 atomic mass evaluation (II). Tables, graphs and references*. Chinese Physics C 45(3), 030003 (2021). doi: 10.1088/1674-1137/abddafhttp://doi.org/10.1088/1674-1137/abddaf.
M. Lewis, S.E. Seeman, Performance experience with prototype betacel nuclear batteries. Nucl. Technol. 17(2), 160-167 (1973). doi: 10.13182/NT73-A31243http://doi.org/10.13182/NT73-A31243
W.M. Ayers, C.A. Gentile, High power beta electron device - Beyond betavoltaics. Appl. Radiat. Isot. 131, 88-95 (2018). doi: 10.1016/j.apradiso.2017.10.050http://doi.org/10.1016/j.apradiso.2017.10.050
T. Kim, N. Lee, H.K. Jung, J.H. Kim, Enhancement of energy performance in betavoltaic cells by optimizing self-absorption of beta particles. Int. J. Energy Res. 40(4), 522-528 (2016). doi: 10.1002/er.3470http://doi.org/10.1002/er.3470.
S.I. Maximenko, J.E. Moore, C.A. Affouda et al., Optimal semiconductors for 3H and 63Ni betavoltaics. Sci. Rep. 9(1), 10892 (2019). doi: 10.1038/s41598-019-47371-6http://doi.org/10.1038/s41598-019-47371-6
C. Delfaure, M. Pomorski, J. de Sanoit et al., Single crystal CVD diamond membranes for betavoltaic cells. Appl. Phys. Lett. 108(25), 252105 (2016). doi: 10.1063/1.4954013http://doi.org/10.1063/1.4954013.
L.C. Olsen, P. Cabauy, B.J. Elkind, Betavoltaic power sources. Physics Today 65(12), 35-38 (2012). doi: 10.1063/pt.3.1820http://doi.org/10.1063/pt.3.1820.
L.C. Olsen, Review of betavoltaic energy conversion. Energy Convers 13, 117 (1973).
T.L. Nam, U. Karfunkel, R.J. Keddy et al., The effects of nitrogen impurity on the radiation detection properties of synthetic diamond. Radiat. Eff. Defects Solids 116(3), 233-252 (1991). doi: 10.1080/10420159108213111http://doi.org/10.1080/10420159108213111.
N. Wang, R. Zheng, T. Chi et al., Betavoltaic-powered electrochemical cells using TiO2 nanotube arrays incorporated with carbon nanotubes. Compos. Part B-Eng. 239, 109952 (2022). doi: 10.1016/j.compositesb.2022.109952http://doi.org/10.1016/j.compositesb.2022.109952
R. Zheng, Z. Ding, W. Wang et al., Electrochemical enhanced betavoltaic cells based on ZrO2@TiO2 nanorod arrays with type-I band alignment. Appl. Surf. Sci. 611, 155757 (2023). doi: 10.1016/j.apsusc.2022.155757http://doi.org/10.1016/j.apsusc.2022.155757.
Y. Hwang, Y.H. Park, H.S. Kim et al., C-14 powered dye-sensitized betavoltaic cells. Chem. Comm. 56(52), 7080-7083 (2020). doi: 10.1039/D0CC02046Jhttp://doi.org/10.1039/D0CC02046J.
NDB. https://ndb.technology/company/https://ndb.technology/company/. (Accessed 12.02.2022)
V.S. Bormashov, S.Y. Troschiev, S.A. Tarelkin et al., High power density nuclear battery prototype based on diamond Schottky diodes. Diam. Relat. Mater. 84, 41-47 (2018). doi: 10.1016/j.diamond.2018.03.006http://doi.org/10.1016/j.diamond.2018.03.006.
X.-B. Cheng, M.-Q. Zhao, C. Chen et al., Nanodiamonds suppress the growth of lithium dendrites. Nat. Commun. 8(1), 336 (2017). doi: 10.1038/s41467-017-00519-2http://doi.org/10.1038/s41467-017-00519-2.
H. Wang, Y. Cui, Nanodiamonds for energy. Carbon Energy 1(1), 13-18 (2019). doi: 10.1002/cey2.9http://doi.org/10.1002/cey2.9.
M.E. Plonska-Brzezinska, L. Echegoyen, Carbon nano-onions for supercapacitor electrodes: recent developments and applications. J. Mater. Chem. A 1(44), 13703-13714 (2013). doi: 10.1039/C3TA12628Ehttp://doi.org/10.1039/C3TA12628E
S. Heyer, W. Janssen, S. Turner et al., Toward deep blue nano hope diamonds: Heavily boron-doped diamond nanoparticles. ACS Nano 8(6), 5757-5764 (2014). doi: 10.1021/nn500573xhttp://doi.org/10.1021/nn500573x
A. Afandi, A. Howkins, I.W. Boyd et al., Nanodiamonds for device applications: An investigation of the properties of boron-doped detonation nanodiamonds. Sci. Rep. 8(1), 3270 (2018). doi: 10.1038/s41598-018-21670-whttp://doi.org/10.1038/s41598-018-21670-w
C. Zhou, J. Zhang, X. Wang et al., Review—betavoltaic cell: The past, present, and future. ECS J. Solid State Sci. Technol. 10(2), 027005 (2021). doi: 10.1149/2162-8777/abe423http://doi.org/10.1149/2162-8777/abe423.
A. Krasnov, S. Legotin, K. Kuzmina et al., A nuclear battery based on silicon p-i-n structures with electroplating 63Ni layer. Nucl. Eng. Technol. 51(8), 1978-1982 (2019). doi: 10.1016/j.net.2019.06.003http://doi.org/10.1016/j.net.2019.06.003.
H. Kato, M. Ogura, T. Makino et al., N-type control of single-crystal diamond films by ultra-lightly phosphorus doping. Appl. Phys. Lett. 109(14), 142102 (2016). doi: 10.1063/1.4964382http://doi.org/10.1063/1.4964382.
Y. Liu, R. Hu, Y. Yang et al., Investigation on a radiation tolerant betavoltaic battery based on Schottky barrier diode. Appl. Radiat. Isot 70(3), 438-441 (2012). doi: 10.1016/j.apradiso.2011.10.013http://doi.org/10.1016/j.apradiso.2011.10.013
V. Bormashov, S. Troschiev, A. Volkov et al., Development of nuclear microbattery prototype based on Schottky barrier diamond diodes. Phys. Status Solidi A 212(11), 2539-2547 (2015). doi: 10.1002/pssa.201532214http://doi.org/10.1002/pssa.201532214
T.R. Alam, M.A. Pierson, M.A. Prelas, Beta particle transport and its impact on betavoltaic battery modeling. Appl. Radiat. Isot. 130, 80-89 (2017). doi: 10.1016/j.apradiso.2017.09.009http://doi.org/10.1016/j.apradiso.2017.09.009.
Z. Ding, T.-X. Jiang, R.-R. Zheng et al., Quantitative modeling, optimization, and verification of 63Ni-powered betavoltaic cells based on three-dimensional ZnO nanorod arrays. Nucl. Sci. Tech. 33(11), 144 (2022). doi: 10.1007/s41365-022-01127-6http://doi.org/10.1007/s41365-022-01127-6
C. Chen, N. Wang, P. Zhou et al., Electrochemically reduced graphene oxide on well-aligned titanium dioxide nanotube arrays for betavoltaic enhancement. ACS Appl. Mater. Interfaces 8(37), 24638-24644 (2016). doi: 10.1021/acsami.6b08112http://doi.org/10.1021/acsami.6b08112.
C. Daruich de Souza, J.B. Kim, J.J. Kim et al., Monte Carlo simulation for evaluating the attenuation effects of a protective layer for a Ni-63 nuclear battery. Prog. Nucl. Energy 144, 104084 (2022). doi: 10.1016/j.pnucene.2021.104084http://doi.org/10.1016/j.pnucene.2021.104084.
M.G. Spencer, T. Alam, High power direct energy conversion by nuclear batteries. Appl. Phys. Rev. 6(3), 031305 (2019). doi: 10.1063/1.5123163http://doi.org/10.1063/1.5123163.
M.A. Prelas, C.L. Weaver, M.L. Watermann et al., A review of nuclear batteries. Prog. Nucl. Energy 75, 117-148 (2014). doi: 10.1016/j.pnucene.2014.04.007http://doi.org/10.1016/j.pnucene.2014.04.007.
J. Richter, M.J. Bernstein, M. Farooque, The process to find a process for governance: Nuclear waste management and consent-based siting in the United States. Energy Res. Soc. Sci. 87, 102473 (2022). doi: 10.1016/j.erss.2021.102473http://doi.org/10.1016/j.erss.2021.102473.
J. Pageot, J.N. Rouzaud, L. Gosmain et al., 14C selective extraction from French graphite nuclear waste by CO2 gasification. Prog. Nucl. Energy 105, 279-286 (2018). doi: 10.1016/j.pnucene.2018.02.003http://doi.org/10.1016/j.pnucene.2018.02.003.
J. Fachinger, W. von Lensa, T. Podruhzina, Decontamination of nuclear graphite. Nucl. Eng. Des. 238(11), 3086-3091 (2008). doi: 10.1016/j.nucengdes.2008.02.010http://doi.org/10.1016/j.nucengdes.2008.02.010
M.L. Dunzik-Gougar, T.E. Smith, Removal of carbon-14 from irradiated graphite. J. Nucl. Mater. 451(1), 328-335 (2014). doi: 10.1016/j.jnucmat.2014.03.018http://doi.org/10.1016/j.jnucmat.2014.03.018
K.S. Kasprzak, Radioactive 63Ni in biological research. Pure Appl. Chem. 51(6), 1375-1390 (1979). doi: 10.1351/pac197951061375http://doi.org/10.1351/pac197951061375
Z. Shayer, Nuclear battery based on hydride/thorium fuel. Colorado School of Mines, United States, 2015.
K. Adler, Ducommun, Miniaturized nuclear battery, Biviator, S.A. (Grenchen, CH), US, 1976.
M. Spencer, M. Chandrashekhar, C. Thomas, Nuclear batteries Widetronix, Inc. (Ithaca, NY, US), United States, 2012.
0
Views
5
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution