1.School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
2.China Institute of Atomic Energy (CIAE), P.O. Box 275(10), Beijing 102413, China
[ ] xiaofei.yang@pku.edu.cn
Scan for full text
Yong-Chao Liu, Xiao-Fei Yang, Shi-Wei Bai, et al. Control and data acquisition system for collinear laser spectroscopy experiments. [J]. Nuclear Science and Techniques 34(3):38(2023)
Yong-Chao Liu, Xiao-Fei Yang, Shi-Wei Bai, et al. Control and data acquisition system for collinear laser spectroscopy experiments. [J]. Nuclear Science and Techniques 34(3):38(2023) DOI: 10.1007/s41365-023-01197-0.
A control and data acquisition system was implemented for the recently-developed collinear laser spectroscopy setup. This system is dedicated to data recording, storage, processing, monitoring of the beam intensity and energy, and visualization of various spectra. In comparison to the conventional resonance nuclear reaction system, the key technique is the precise synchronization of the detected counts with the actual scanning voltage (or probing laser frequency). The functions of the system were tested by measuring the hyperfine structure spectra of stable calcium (e.g.,40,Ca,+,) and radioactive potassium (e.g.,38,K) in the bunched and continuous modes, respectively. This system will be routinely applied and further improved in subsequent laser spectroscopy experiments on unstable isotopes at the Beijing Radioactive Ion-beam Facility (BRIF).
Collinear laser spectroscopyHyperfine structureData acquisition systemVoltage scanning
W. Nörtershäuser, D. Tiedemann, M. Žáková et al., Nuclear charge radii of 7,9,10Be and the one-neutron halo nucleus 11Be. Phys. Rev. Lett. 102, 062503 (2009). doi: 10.1103/PhysRevLett.102.062503http://doi.org/10.1103/PhysRevLett.102.062503
K.T. Flanagan, P. Vingerhoets, M. Avgoulea et al., Nuclear spins and magnetic moments of 71,73,75Cu: Inversion of π2p3/2 and π1f5/2 levels in 75Cu. Phys. Rev. Lett. 103, 142501 (2009). doi: 10.1103/PhysRevLett.103.142501http://doi.org/10.1103/PhysRevLett.103.142501
X.F. Yang, C. Wraith, L. Xie et al., Isomer shift and magnetic moment of the long-lived 1/2+ isomer in : Signature of shape coexistence near 78Ni. Phys. Rev. Lett. 116, 182502 (2016). doi: 10.1103/PhysRevLett.116.182502http://doi.org/10.1103/PhysRevLett.116.182502
R.F. Garcia Ruiz, M.L. Bissell, K. Blaum et al., Unexpectedly large charge radii of neutron-rich calcium isotopes. Nat. Phys. 12, 594-598 (2016). doi: 10.1038/nphys3645http://doi.org/10.1038/nphys3645
Á. Koszorús, X.F. Yang, W.G. Jiang et al., Charge radii of exotic potassium isotopes challenge nuclear theory and the magic character of N = 32. Nat. Phys. 17, 439-433 (2021) doi: 10.1038/s41567-020-01136-5http://doi.org/10.1038/s41567-020-01136-5
R.P. de Groote, J. Billowes, C.L. Binnersley et al., Measurement and microscopic description of odd-even staggering of charge radii of exotic copper isotopes. Nat. Phys. 16, 620-624 (2020). doi: 10.1038/s41567-020-0868-yhttp://doi.org/10.1038/s41567-020-0868-y
S.W. Bai, Á. Koszorús, B.S. Hu et al., Electromagnetic moments of scandium isotopes and N= 28 isotones in the distinctive 0f7/2 orbit. Phys. Lett. B 829, 137064 (2022). doi: 10.1016/j.physletb.2022.137064http://doi.org/10.1016/j.physletb.2022.137064
S. Malbrunot-Ettenauer, S. Kaufmann, S. Bacca et al., Nuclear charge radii of the nickel isotopes 58-68,70Ni. Phys. Rev. Lett 128, 022502 (2022). doi: 10.1103/PhysRevLett.128.022502http://doi.org/10.1103/PhysRevLett.128.022502
P. Campbell, I.D. Moore, M.R. Pearson, Laser spectroscopy for nuclear structure physics. Prog. Part. Nucl. Phys. 86, 127 (2016). https://www.sciencedirect.com/science/article/pii/S014664101500091510.1016/j.ppnp.2015.09.003https://www.sciencedirect.com/science/article/pii/S014664101500091510.1016/j.ppnp.2015.09.003
X.F. Yang, S.J. Wang, S.G. Wilkins et al., Laser spectroscopy for the study of exotic nuclei. Prog. Part. Nucl. Phys. 129, 104005 (2023). doi: 10.1016/j.ppnp.2022.104005http://doi.org/10.1016/j.ppnp.2022.104005
R. Neugart, J. Billowes, M.L. Bissell et al., Collinear laser spectroscopy at ISOLDE: new methods and highlights. J. Phys. G Nucl. Part. Phys. 44, 064002 (2017). doi: 10.1088/1361-6471/aa6642http://doi.org/10.1088/1361-6471/aa6642
R.P. de Groote, A. de Roubin, P. Campbell et al., Upgrades to the collinear laser spectroscopy experiment at the IGISOL. Nucl. Instrum. Methods Phys. Res. Sect. B 463, 437-440 (2020). doi: 10.1016/j.nimb.2019.04.028http://doi.org/10.1016/j.nimb.2019.04.028
A. Voss, T.J. Procter, O. Shelbaya et al., The collinear fast beam laser spectroscopy (CFBS) experiment at TRIUMF. Nucl. Instrum. Methods Phys. Res., Sect. A 811, 57 (2016). https://www.sciencedirect.com/science/article/pii/S016890021501564810.1016/j.nima.2015.11.145https://www.sciencedirect.com/science/article/pii/S016890021501564810.1016/j.nima.2015.11.145
K. Minamisono, P.F. Mantica, A. Klose et al., Commissioning of the collinear laser spectroscopy system in the BECOLA facility at NSCL. Nucl. Instrum. Methods Phys. Res., Sect. A 709, 85 (2013). https://www.sciencedirect.com/science/article/pii/S016890021300103410.1016/j.nima.2013.01.038https://www.sciencedirect.com/science/article/pii/S016890021300103410.1016/j.nima.2013.01.038
D.T. Yordanov, D. Atanasov, M.L. Bissell et al., Instrumentation for high-resolution laser spectroscopy at the ALTO radioactive-beam facility. J. Instrum. 15, P06004-P06004 (2020). doi: 10.1088/1748-0221/15/06/p06004http://doi.org/10.1088/1748-0221/15/06/p06004
K. König, J. Krämer, C. Geppert et al., A new Collinear Apparatus for Laser Spectroscopy and Applied Science (COALA). Rev. Sci. Instrum. 91, 081301 (2020). doi: 10.1063/5.0010903http://doi.org/10.1063/5.0010903
A.R. Vernon, R.P. de Groote, J. Billowes et al., Optimising the Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN-ISOLDE. Nucl. Instrum. Methods Phys. Res., Sect. B 463, 384-389 (2020). doi: 10.1016/j.nimb.2019.04.049http://doi.org/10.1016/j.nimb.2019.04.049
S.W. Bai, X.F. Yang, S.J. Wang et al., Commissioning of a high-resolution collinear laser spectroscopy apparatus with a laser ablation ion source. Nucl. Sci. Tech. 33, 9 (2022). doi: 10.1007/s41365-022-00992-5http://doi.org/10.1007/s41365-022-00992-5
S.J. Wang, X.F. Yang, S.W. Bai et al., Construction and commissioning of the collinear laser spectroscopy system at BRIF. Nucl. Instrum. Methods Phys. Res., Sect. A 1032, 166622(2022). doi: 10.1016/j.nima.2022.166622http://doi.org/10.1016/j.nima.2022.166622
W. Nan, B. Guo, C.J. Lin et al., First proof-of-principle experiment with the post-accelerated isotope separator on-line beam at BRIF: measurement of the angular distribution of 23Na + 40Ca elastic scattering. Nucl. Sci. Tech. 32, 53 (2021). doi: 10.1007/s41365-021-00889-9http://doi.org/10.1007/s41365-021-00889-9
Y. Yang, L.T. Sun, Y.H. Zhai et al., Heavy ion accelerator facility front end design and commissioning. Phys. Rev. Accel. Beams. 22, 110101 (2019). doi: 10.1103/PhysRevAccelBeams.22.110101http://doi.org/10.1103/PhysRevAccelBeams.22.110101
G.R. Stachler, Introduction to nuclear reactions. (Springer, London, 2019). doi: 10.1007/978-1-349-20531-8http://doi.org/10.1007/978-1-349-20531-8
P. Zhang, Y.S. Liu, S.W. Bai et al., Progress in the development of a collinear laser spectroscopy setup for the study of unstable nuclei. Chin. Sci. Bull. (2022). doi: 10.1360/TB-2022-1116http://doi.org/10.1360/TB-2022-1116
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution