1.Laboratoire de Physico-Chimie des Matériaux, Département de Physique, Faculté des Sciences de Monastir, Université de Monastir, Tunisia
2.Université de Sousse, Institut Supérieur du Transport et de la Logistique de Sousse 4023, Tunisia
3.Laboratoire de Recherche en Energie et Matière, Développement des Sciences Nucléaires (LR16CNSTN02). Centre National des Sciences et Technologies Nucléaires 2020 Sidi-Thabet, Tunisia
Safa Toumi stoumi097@gmail.com
Scan for full text
Safa Toumi, Khaled Farah. Thermoluminescent response of gamma irradiated Na+-Cu+ ion‐exchanged silicate glass in large dose range. [J]. Nuclear Science and Techniques 34(5):66(2023)
Safa Toumi, Khaled Farah. Thermoluminescent response of gamma irradiated Na+-Cu+ ion‐exchanged silicate glass in large dose range. [J]. Nuclear Science and Techniques 34(5):66(2023) DOI: 10.1007/s41365-023-01223-1.
The introduction of metals into vitreous matrices is the origin of various interesting phenomena; in particular, the presence of copper ions in glass has been the subject of considerable research because of its numerous applications. The ion-exchange process is primarily used to introduce copper ions into glass matrices. The thermoluminescence (TL) of silicate glass was studied to evaluate its potential as gamma-sensitive material for dosimetric applications; the effect of copper doping on the thermoluminescent sensitivity was investigated using the Cu-Na ion-exchange technique for different concentrations and doping conditions, over a wide dose range of 10 mGy to 100 kGy. The results showed that Cu doping significantly improved the sensitivity of the glasses to gamma radiation. After the ion-exchange, two peaks appeared in the glow curves at approximately 175 and 230 ℃, respectively, which possibly originated from the Cu,+, centers, along with a weak TL peak at around 320 ℃. We also attempted to explain the origin of the observed thermoluminescence by exploiting the Electron paramagnetic resonance (EPR) spectra. The results clearly show quenching of the TL emission with increasing copper concentrations. The present work indicates that the thermoluminescence response of these glasses to gamma rays can be reasonably measured in the range of 0.001–100 kGy. This study also facilitates the understanding of the basic TL mechanism in this glass system.
Cu-Na ion-exchangeSilicate glassThermoluminescenceGamma irradiationElectron paramagnetic resonance
S.F. Kry, P. Alvarez, J.E. Cygler et al., AAPM TG 191: Clinical use of luminescent dosimeters: TLDs and OSLDs. Med. Phys. 47, e19-e51(2020). doi: 10.1002/mp.13839http://doi.org/10.1002/mp.13839
C.Y. Chen, K.C. Liu, H.H. Chen et al., Optimizing the TLD-100 readout system for various radiotherapy beam doses using the Taguchi methodology. Appl. Radiat. Isotopes 68, 481-488 (2010). doi: 10.1016/j.apradiso.2009.12.001http://doi.org/10.1016/j.apradiso.2009.12.001
M. Sadeghi , S. Sina , R. Faghihi, Investigation of LiF, Mg and Ti (TLD-100) Reproducibility. J. Biomed. Phys. Eng. 5, 217-222 (2015). doi: 10.22086/JBPE.V5I4http://doi.org/10.22086/JBPE.V5I4
R. Debnath, A. K. Chaudhuri, High temperature thermoluminescence of gamma irradiated copper activated silica glass and its application to dosimetry. J. Lumin. 65, 279-282 (1995). doi: 10.1016/0022-2313(95)00076-3http://doi.org/10.1016/0022-2313(95)00076-3
N. Kucuk, I. Kucuk, M. Cakir et al., Synthesis, thermoluminescence and dosimetric properties of La-doped zinc borates. J. Lumin. 139, 84-90 (2013). doi: 10.1016/j.jlumin.2013.02.027http://doi.org/10.1016/j.jlumin.2013.02.027
S. Kar, S. Bairagi, C. Debnath et al., Thermoluminescence studies on γ-irradiated Mn: Li2B4O7 single crystals. Appl. Phys. Lett. 101, 071904 (2012). doi: 10.1063/1.4747147http://doi.org/10.1063/1.4747147
M. Marrale, A. Longo, A. Bartolotta et al., Preliminary application of thermoluminescence and single aliquot regeneration method for dose reconstruction in soda lime glass. Nucl. Instrum. Meth. Phys. Res. B 297, 58-61 (2013). doi: 10.1016/j.nimb.2012.12.013http://doi.org/10.1016/j.nimb.2012.12.013
J. Chaudhun and R. Debnath. Site-dependent thermoluminescence of copper (1) ions in silica glass. J. Phys. Condens. Mat. 6, 3987-3992 (1994). doi: 10.1088/0953-8984/6/21/022http://doi.org/10.1088/0953-8984/6/21/022
A.L. Yusoff, R.P. Hugtenburg, D.A. Bradley, Review of development of a silica-based thermoluminescence dosimeter. Radiat. Phys. Chem. 74, 459-481 (2005). doi: 10.1016/j.radphyschem.2005.08.009http://doi.org/10.1016/j.radphyschem.2005.08.009
H.E. Hamzaoui, Y. Ouerdane, L. Bigot et al., Sol-gel derived ionic copper-doped microstructured optical fiber: A potential selective ultraviolet radiation dosimeter. Optics Express 20, 29751-29760 (2012). doi: 10.1364/OE.20.029751http://doi.org/10.1364/OE.20.029751
H.E. Hamzaoui, G. Bouwmans, B. Capoen et al., Effects of densification atmosphere on optical properties of ionic copper-activated sol–gel silica glass: towards an efficient radiation dosimeter. Mater. Res. Express 1, 026203 (2014). doi: 10.1088/2053-1591/1/2/026203http://doi.org/10.1088/2053-1591/1/2/026203
N.A. Helou, H.E. Hamzaoui, B. Capoen et al., Effects of ionizing radiations on the optical properties of ionic copperactivated sol-gel silica glasses. Opt. Mater. 75, 116-121 (2018). doi: 10.1016/j.optmat.2017.09.049http://doi.org/10.1016/j.optmat.2017.09.049
N.A. Helou, H.E. Hamzaoui, B. Capoen et al., Optical responses of a copper-activated sol-gel silica glass under low-dose and low-dose rate X-ray exposures. OSA Continuum 2, 563-571 (2019). doi: 10.1364/OSAC.2.000563http://doi.org/10.1364/OSAC.2.000563
O.I. Sallam, A. Alhodaib, S.A.E. Aal et al., Influence of gamma ray on optical and structural properties of commercial glass enriched with copper oxide. Inorganic Chem. Communications 124, 108388 (2021). doi: 10.1016/j.inoche.2020.108388http://doi.org/10.1016/j.inoche.2020.108388
B.L. Justus, S. Rychnovsky, M.A. Miller et al., Optically stimulated luminescence radiation dosimetry using doped silica glass. Radiat. Protect. Dosim. 74, 151-157 (1997). doi: 10.1093/oxfordjournals.rpd.a032191http://doi.org/10.1093/oxfordjournals.rpd.a032191
B. Capoen, H.E. Hamzaoui, M. Bouazaoui et al., Sol–gel derived copper-doped silica glass as a sensitive material for X-ray beam dosimetry. Opt. Mater. 51, 104-109 (2016). doi: 10.1016/j.optmat.2015.11.034http://doi.org/10.1016/j.optmat.2015.11.034
R. Hashikawa, Y. Fujii, A. Kinomura et al., Radiophotoluminescence phenomenon in copper-doped aluminoborosilicate glass. J. Am. Ceram. Soc. 102, 1642-1651 (2019). doi: 10.1111/jace.16027http://doi.org/10.1111/jace.16027
P. Kumar, M.C. Mathpal, A.K. Tripathi et al., Plasmonic resonance of Ag nanoclusters diffused in soda-lime glasses. Phys. Chem. Chem. Phys. 17, 8596 (2015). doi: 10.1039/C4CP05679Ehttp://doi.org/10.1039/C4CP05679E
S. Berneschi, G.C. Righini, S. Pelli, Towards a glass new world: The role of ion-exchange in modern technology (Review). Appl. Sci. 11, 4610 (2021). doi: 10.3390/app11104610http://doi.org/10.3390/app11104610
D.L. Anderson, T. Belgya, R.B. Firestone et al., Handbook of Prompt Gamma Activation Analysis. Springer New York, NY (2004). doi: 10.1007/978-0-387-23359-8http://doi.org/10.1007/978-0-387-23359-8
K. Farah, T. Jerbi, F. Kuntz et al.,Dose measurements for characterization of a semi-industrial cobalt-60 gamma-irradiation facility. Radiat. Meas. 41, 201-208 (2006). doi: 10.1016/j.radmeas.2005.03.003http://doi.org/10.1016/j.radmeas.2005.03.003
ISO/ASTM 51026. Practice for using the Fricke Reference Standard Dosimetry System. American Society for Testing and Materials, Philadelphia, PA (2015).
Y.S. Horowitza, L. Osterb, I. Eliyahu. The saga of the thermoluminescence (TL) mechanisms and dosimetric characteristics of LiF:Mg,Ti (TLD-100). J. Lumin. 214, 116527 (2019). doi: 10.1016/j.jlumin.2019.116527http://doi.org/10.1016/j.jlumin.2019.116527
E. Arzaga-Barajas, G. Massillon-JL, Thermoluminescent relative efficiency of TLD-100 glow peaks after exposure to X-rays of 20 kV–300 kV, 137Cs and 60Co gamma. Radiat. Meas. 146, 106635 (2021). doi: 10.1016/j.radmeas.2021.106635http://doi.org/10.1016/j.radmeas.2021.106635
K. Farah, A. Mejri, and H. Ben Ouada. Study of optical absorption in gamma irradiated glass for radiation dosimetry purpose. AIP Conference Proceedings, 935, 231-236 (2007). doi: 10.1063/1.2795419http://doi.org/10.1063/1.2795419
K. Farah, A. Mejri, F. Hosni et al., Characterization of a silicate glass as a high dose dosimeter. Nucl. Instrum. Meth. Phys. Res. A 614, 137-144 (2010). doi: 10.1016/j.nima.2009.12.014http://doi.org/10.1016/j.nima.2009.12.014
P. Narayan, K.R. Senwar, S.G. Vaijapurkar et al., Application of commercial glasses for high dose measurement using the thermoluminescent technique. Appl. Radiat. Isot. 66, 86-89 (2008). doi: 10.1016/j.apradiso.2007.07.018http://doi.org/10.1016/j.apradiso.2007.07.018
S.W.S. McKeever, S. Sholom, Trap level spectroscopy of disordered materials using thermoluminescence: An application to aluminosilicate glass. J. Lumin. 234, 117950 (2021). doi: 10.1016/j.jlumin.2021.117950http://doi.org/10.1016/j.jlumin.2021.117950
D. Nakauchia, K. Shinozakib, N. Kawaguchia et al., Photo-, radio- and thermo- luminescence properties of Eu-doped BaSi2O5 glass-ceramics. Optik 185, 812-818 (2019). doi: 10.1016/j.ijleo.2019.03.130http://doi.org/10.1016/j.ijleo.2019.03.130
Z. Vejnovic, M.B. Pavlovic, M. Davidovic, Fitting the glow curve and calculating TL parameters. J. Phys. D Appl. Phys. 32, 72-78 (1999). doi: 10.1088/0022-3727/32/1/012http://doi.org/10.1088/0022-3727/32/1/012
F. Gonella, F. Caccavale, L.D. Bogomolova et al., Experimental study of copper–alkali ion exchange in glass. J. Appl. Phys. 83, 1200-1206 (1998). doi: 10.1063/1.366816http://doi.org/10.1063/1.366816
P.D. Johnson, F.E. Williams, Specific magnetic susceptibilities and related properties of manganese activated zinc fluoride. J. Chem. Phys. 18, 322 (1950). doi: 10.1063/1.1747625http://doi.org/10.1063/1.1747625
P.D. Johnson, F.E. Williams, The interpretation of the dependence of luminescent efficiency on activator concentration. J. Chem. Phys. 18, 1477-1483 (1950). doi: 10.1063/1.1747517http://doi.org/10.1063/1.1747517
R. Mostefa, A. Kadari, S. Hiadsi et al.,Modeling of the concentration quenching of thermoluminescence in dolomite using the 5TOR model. Optik 127, 368 (2016). doi: 10.1016/j.ijleo.2015.10.061http://doi.org/10.1016/j.ijleo.2015.10.061
R. Chen, J.L. Lawless, V. Pagonis, A model for explaining the concentration quenching of thermoluminescence. Radiat. Meas. 46, 1380 (2011). doi: 10.1016/j.radmeas.2011.01.022http://doi.org/10.1016/j.radmeas.2011.01.022
Swamy B.J.R.S., Bhaskar Sanyal, R. Vijay, P. Ramesh babu, D. Krishna Rao, N. Veeraiah. Influence of copper ions on thermoluminescence characteristics of CaF2–B2O3–P2O5 glass system. Ceramics International 40, 3707-3713 (2014). doi: 10.1016/j.ceramint.2013.09.053http://doi.org/10.1016/j.ceramint.2013.09.053
K. Farah, Spectroscopic studies of irradiated glasses: application in nuclear dosimetry (2010). University of Monastir, Tunisia (in French). 〈tel-02092744〉
S.I. Andronenko, R.R. Andronenko, A.V. Vasil’ev et al., Local symmetry of Cu2+ ions in sodium silicate glasses from data of EPR spectroscopy. Glass Physics and Chemistry 30, 230-235 (2004). doi: 10.1023/B:GPAC.0000032224.23793.8chttp://doi.org/10.1023/B:GPAC.0000032224.23793.8c
J.M. Dance, J.P. Darnaudery, H. Baudry et al., Etude par RPE de verres appartenant au système Cao-B2O3-AL2O3 dopés a V4, Fe3+ et Cu2+. Solid State Commun. 39, l99-120 (1981). doi: 10.1016/0038-1098(81)90656-6http://doi.org/10.1016/0038-1098(81)90656-6
T. K. Gundurao, J. R. Sarwade, S. V. Moharil, Correlated ESR, PL and TL studies on copper activated thermoluminescence dosimetry phosphors. Radiat. Eff. Defect. S. 138, 177-184 (2006). doi: 10.1080/10420159608211520http://doi.org/10.1080/10420159608211520
M. A. Ouis, W. M. AbdAllah, O. I. Sallam, Gamma ray interaction with soda lime silicate glasses doped with V2O5, CuO or SrO. Appl. Phys. A 128, 389 (2022). doi: 10.1007/s00339-022-05522-zhttp://doi.org/10.1007/s00339-022-05522-z
M.S.A. Fadzil, N.M. Noor, N. Tamchek et al., A cross-validation study of Ge-doped silica optical fibres and TLD-100 systems for high energy photon dosimetry audit under non-reference conditions. Radiat. Phys. Chem. 200, 110232 (2022). doi: 10.1016/j.radphyschem.2022.110232http://doi.org/10.1016/j.radphyschem.2022.110232
S.A. Sinclair, M.I. Pech-Canul, Development feasibility of TLD phosphors and thermoluminescent composite materials for potential applications in dosimetry: A review. Chem. Eng. J. 443, 136522 (2022). doi: 10.1016/j.cej.2022.136522http://doi.org/10.1016/j.cej.2022.136522
M. H. Sahini, I. Hossain, M.A. Saeed et al., Thermoluminescence of LiF:Mg,Ti (TLD 100) subject to 1.25 mega electron volt gamma radiotherapy. Natl. Acad. Sci. Lett. 38, 365-367 (2015). doi: 10.1007/s40009-015-0351-yhttp://doi.org/10.1007/s40009-015-0351-y
R. Liuzzi, C. Piccolo, V. D’Avino et al., Dose–Response of TLD-100 in the dose range useful for hypofractionated radiotherapy. Dose-Response 18, 1-8 (2020). doi: 10.1177/1559325819894081http://doi.org/10.1177/1559325819894081
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution