Miao-Fu Xu, Xiang-Zhen Zhang, Rui Ye, et al. Commissioning and operation of the cryostat for 3W1 SC wiggler. [J]. Nuclear Science and Techniques 34(6):96(2023)
DOI:
Miao-Fu Xu, Xiang-Zhen Zhang, Rui Ye, et al. Commissioning and operation of the cryostat for 3W1 SC wiggler. [J]. Nuclear Science and Techniques 34(6):96(2023) DOI: 10.1007/s41365-023-01232-0.
Commissioning and operation of the cryostat for 3W1 SC wiggler
摘要
Abstract
A 3W1 superconducting wiggler (SCW) with the pole gap of 68 mm was successfully tested and installed in a BEPC II storage ring in November, 2019. The goal of zero liquid helium consumption was achieved, and the cryogenic system exhibited a 12% residual cooling capacity (approximately 0.69 W @4.2K). The 3W1-SCW was set to operate at 2.49 T and has been operating for more than seven months. Three instances of magnet quenching occurred during the normal operation. The evaporated helium gas can be recycled to the helium gas recycling system when the pressure in the helium tank is higher than the parameter value (the setpoint of the pressure value is 1.2 bara). The cryogenic system can be recovered within 4 h if sufficient liquid helium is available to inject into the cryostat.
N.A. Mezentsev, E. Perevedentsev, Survey of superconducting insertion devices for light sources. Proceedings of the 2005 Particle Accelerator Conference, Knoxville, TN, USA, 2005, pp. 256-260. doi: 10.1109/PAC.2005.1590409http://doi.org/10.1109/PAC.2005.1590409
A.A. Volkov, V.K. Lev, N.A. Mezentsev et al., Superconducting 119-pole wiggler with a 2.1-T field and 30-mm period length for the ALBA storage ring. J. Surf. Investig. 6(3), 379-387 (2012). doi: 10.1134/S1027451012050199http://doi.org/10.1134/S1027451012050199
E. Wallén, G. LeBlanc, Cryogenic system of the MAX-Wiggler. Cryogenics 44(12), 879-893 (2004). doi: 10.1016/j.cryogenics.2004.06.003http://doi.org/10.1016/j.cryogenics.2004.06.003
E.C. M. Rial, J. C. Schouten, Electron beam heating effects in superconducting wigglers at Diamond Light Source. IPAC'10, 3195 (2010).
S. Khrushchev, V. Lev, N. Mezentsev et al., 3.5 Tesla 49-pole Superconducting Wiggler for DLS. Proceeding of RuPAC, 398 (2006).
N.A. Mezentsev, S.V. Khrushchev, V.K. Lev et al., Superconducting multipole wigglers: State of the art. Proceedings IPAC, (2014). doi: 10.18429/JACoW-IPAC2014-WEPRI091http://doi.org/10.18429/JACoW-IPAC2014-WEPRI091
M.F. Xu, R. Ge, L. Bian et al., Design and research of cryostat for 3W1 superconducting wiggler magnet. IEEE Transactions on Applied Superconductivity 28(3), 1-6 (2018). doi: 10.1109/TASC.2018.2790380http://doi.org/10.1109/TASC.2018.2790380
M.F. Xu, X. Z. Zhang, R. Ye et al., Design, assembly, and pre-commissioning of cryostat for 3W1 superconducting wiggler magnet. Nucl. Sci. Tech. 31, 113 (2020). doi: 10.1007/s41365-020-00816-4http://doi.org/10.1007/s41365-020-00816-4
X.Z. Zhang, M.F. Xu, R. Ye et al., Thermal analysis and experimental study of cryostat for superconducting wiggler of the HEPS-TF, Cryogenics 116 (2021), doi: 10.1016/j.cryogenics.2021.103307http://doi.org/10.1016/j.cryogenics.2021.103307
N. Mezentsev, E. Wallén, Superconducting wigglers. Synchrotron Radiat. News 24(3), 3-9 (2011). doi: 10.1080/08940886.2011.583883http://doi.org/10.1080/08940886.2011.583883
R.P. Reed, A.F. Clark, L.G. Rubin, Materials at low temperatures. Metals Park, Ohio 44073: American Society for Metals (1983). doi: 10.1063/1.2916172http://doi.org/10.1063/1.2916172
K.V. Zolotare, A.M. Batrakov, S.V. Khruschev et al., High magnetic field superconducting magnets fabricated in Budker INP for Sr generation. Proceedings of RuPAC XIX, Dubna, 40-44 (2004).
A.A. Volkov, A.V. Zorin, V.Kh. Lev et al., The superconducting 15-Pole 7.5 Tesla wiggler in the LSU-CAMD storage ring. Bull. Russ. Acad. Sci. Phys. 79, 53-59 (2015). doi: 10.3103/S1062873815010384http://doi.org/10.3103/S1062873815010384
M.N. Wilson, Superconducting magnets. Oxford University Pres, (1983).
D. Bruno, W. Eng, P.K. Feng et al., RHIC magnet electrical system. Nucl. Instrum. Meth. Phys. Res A 499, 316-348 (2003). doi: 10.1016/S0168-9002(02)01941-1http://doi.org/10.1016/S0168-9002(02)01941-1
J.M. Nogiec, E. Desavouret, M. Lamm et al., Architecture of a software quench management system. PACS2001. Proceedings of the 2001 Particle Accelerator Conference (Cat. No.01CH37268), 5, 3460-3462 (2001). doi: 10.1109/PAC.2001.988144http://doi.org/10.1109/PAC.2001.988144
IIJ.G. Weisend. Handbook of cryogenic engineerging.Taylor & Francis, 1998.
M. Abe, Y. Murata, T. Seki et al., Magnetic field design of a superconducting wiggler in the SAGA-LS storage ring. IEEE T. Appl. Superconduct. 24(2), 54-61 (2014), doi: 10.1109/TASC.2014.2304889http://doi.org/10.1109/TASC.2014.2304889
T. W. Wysokinski, L.D. Chapman, D. Miller et al., 25+2 poles, 4.3 T wiggler at BMIT–7 years operational experience. AIP Conference Proceedings 1741, 020026 (2016); doi: 10.1063/1.4952805http://doi.org/10.1063/1.4952805
C.C. Kuo, K.T. Hsu, G.H. Luo et al., Performance of the SRRC storage ring and wiggler commissioning. Particle Accelerator Conference. IEEE,1, 1582-584 (1995). doi: 10.1109/PAC.1995.504726http://doi.org/10.1109/PAC.1995.504726
E. Wallén, G. Leblanc, T. Warwick, The MAX‐wiggler: Design, construction and commissioning of a 3.5 T superconducting wiggler with 47 poles. AIP Conference Proceedings. 705, 219-222 (2004). doi: 10.1063/1.1757773http://doi.org/10.1063/1.1757773