1.Department of Engineering Physics, Tsinghua University, Beijing 100084, China
2.State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi’an 710024, China
3.Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900, China
4.Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
5.Zhongke Hefei Institutes of Collaborative Research and Innovation for Intelligent Agriculture, Hefei 231131, China
†shengliang@tsinghua.org.cn
‡dych@mail.tsinghua.edu.cn
§z-zhou14@tsinghua.org.cn
Scan for full text
Cite this article
Hao-Qing Li, Liang Sheng, Chang-Qing Zhang, et al. Observation and mitigation of image distortion in high energy electron radiography. [J]. Nuclear Science and Techniques 34(6):93(2023)
Hao-Qing Li, Liang Sheng, Chang-Qing Zhang, et al. Observation and mitigation of image distortion in high energy electron radiography. [J]. Nuclear Science and Techniques 34(6):93(2023) DOI: 10.1007/s41365-023-01234-y.
Image distortion caused by the angular misalignment of quadrupole magnets in high-energy electron radiography has been studied systematically. We propose that the distortion originates from the coupling of the electron motions in the transverse directions, based on a theoretical analysis and the transfer-matrix method. The relative angular rotation between the second and third magnetic quadrupoles was identified as the main contributor to image distortion. This was verified by both a beam-dynamics simulation and experiments. Different strategies to mitigate this image distortion are also explored, including magnets online tuning, higher beam energy and larger magnification factor. This study provides criteria for designing experiments and paves the way for achieving higher image precision.
MisalignmentAngular rotationRussian QuadrupletTransfer matrix
N.S.P. King, E Ables, K. Adams et al., An 800-MeV proton radiography facility for dynamic experiments. Nucl. Instrum. Meth. A. 424, 84-91 (1999). https://www.sciencedirect.com/science/article/pii/S0168900298012418https://www.sciencedirect.com/science/article/pii/S0168900298012418doi: 10.1016/S0168-9002(98)01241-8http://doi.org/10.1016/S0168-9002(98)01241-8
A.A. Golubev, V.S. Demidov, E.V. Demidova et al., Application of TWAC beams for diagnostics of fast processes. Atom. Energy. 104, 134-141 (2008). doi: 10.1007/s10512-008-9004-2http://doi.org/10.1007/s10512-008-9004-2
C.L. Morris, N.S.P. King, K. Kwiatkowski et al., Charged particle radiography. Reports on Progress in Physics. 76, 046301 (2013). https://www.ncbi.nlm.nih.gov/pubmed/23481477https://www.ncbi.nlm.nih.gov/pubmed/23481477doi: 10.1088/0034-4885/76/4/046301http://doi.org/10.1088/0034-4885/76/4/046301
Y. Zhao, R. Cheng, Y. Wang et al., High energy density physics research at IMP, Lanzhou, China. High Power Laser Science and Engineering. 2, e39 (2014). https://www.cambridge.org/core/article/high-energy-density-physics-research-at-imp-lanzhou-china/28DFF2B861490874B34BF6E5FC762512https://www.cambridge.org/core/article/high-energy-density-physics-research-at-imp-lanzhou-china/28DFF2B861490874B34BF6E5FC762512doi: 10.1017/hpl.2014.44http://doi.org/10.1017/hpl.2014.44
Q. Zhao, Y. Ma, J. Xiao et al., Three-dimensional high-energy electron radiography method for static mesoscale samples diagnostics. Appl. Sci. 9, 3764 (2019). doi: 10.3390/app9183764http://doi.org/10.3390/app9183764
F. Merrill, F. Harmon, A. Hunt et al., Electron radiography. Nucl. Instrum. Meth. B. 261, 382-386 (2007). https://www.sciencedirect.com/science/article/pii/S0168583X07009263https://www.sciencedirect.com/science/article/pii/S0168583X07009263doi: 10.1016/j.nimb.2007.04.127http://doi.org/10.1016/j.nimb.2007.04.127
F.E. Merrill, J. Goett, J.W. Gibbs et al., Demonstration of transmission high energy electron microscopy. Appl. Phys. Lett. 112, 144103 (2018). doi: 10.1063/1.5011198http://doi.org/10.1063/1.5011198
Q.T. Zhao, S.C. Cao, R. Cheng et al., Generation of uniform transverse beam distributions for high-energy electron radiography. Laser Part. Beams. 36, 313-322 (2018). doi: 10.1017/s0263034618000265http://doi.org/10.1017/s0263034618000265
Z. Zhou, Y.C. Du, S.C. Cao et al., Experiments on bright field and dark field high energy electron imaging with thick target material. Phys. Rev. Accel. Beams. 21, 074701 (2018). doi: 10.1103/physrevaccelbeams.21.074701http://doi.org/10.1103/physrevaccelbeams.21.074701
Y.L. Zhu, P. Yuan, S.C. Cao et al., Design and simulation of a LINAC for high energy electron radiography research. Nucl. Instrum. Meth. A. 911, 74-78(2018). doi: 10.1016/j.nima.2018.09.133http://doi.org/10.1016/j.nima.2018.09.133
Z.H. Ran, Z.P. Li, Q.T. Zhao et al., Demonstration of high energy electron radiography with sub-micron spatial resolution. Nucl. Instrum. Meth. A. 1015, 165769 (2021). https://www.sciencedirect.com/science/article/pii/S0168900221007543https://www.sciencedirect.com/science/article/pii/S0168900221007543doi: 10.1016/j.nima.2021.165769http://doi.org/10.1016/j.nima.2021.165769
M.S. Freeman, J.C. Allison, E.F. Aulwes et al., Dark field proton radiography. Appl. Phys. Lett. 117, 144103 (2020). doi: 10.1063/5.0021044http://doi.org/10.1063/5.0021044
W. Wan, F.R. Chen, Y. Zhu, Design of compact ultrafast microscopes for single- and multi-shot imaging with MeV electrons. Ultramicroscopy 194, 143-153 (2018). http://www.sciencedirect.com/science/article/pii/S0304399118300809http://www.sciencedirect.com/science/article/pii/S0304399118300809doi: 10.1016/j.ultramic.2018.08.005http://doi.org/10.1016/j.ultramic.2018.08.005
Z. Zhou, Y. Fang, H. Chen et al., Demonstration of single-shot high-quality cascaded high-energy-electron radiography using compact imaging lenses based on permanent-magnet quadrupoles. Phys. Rev. Appl. 11, 034068 (2019). doi: 10.1103/PhysRevApplied.11.034068http://doi.org/10.1103/PhysRevApplied.11.034068
J.K. Lim, P. Frigola, G. Travish et al., Adjustable, short focal length permanent-magnet quadrupole based electron beam final focus system. Phys. Rev. Spec. Top. Accel. Beams. 8, 072401(2005). doi: 10.1103/PhysRevSTAB.8.072401http://doi.org/10.1103/PhysRevSTAB.8.072401
R.K. Li, P. Musumeci, Single-shot MeV transmission electron microscopy with picosecond temporal resolution. Phys. Rev. Appl. 2, 024003 (2014). doi: 10.1103/PhysRevApplied.2.024003http://doi.org/10.1103/PhysRevApplied.2.024003
K. Halbach, Permanent multipole magnets with adjustable strength. IEEE Trans. Nucl. Sci. 30, 3 (1982). https://www.semanticscholar.org/paper/Permanent-Multipole-Magnets-with-Adjustable-Halbach/59bcf2e9dc672afe659d24fd6f344b89e805b2e5https://www.semanticscholar.org/paper/Permanent-Multipole-Magnets-with-Adjustable-Halbach/59bcf2e9dc672afe659d24fd6f344b89e805b2e5doi: 10.1109/TNS.1983.4336645http://doi.org/10.1109/TNS.1983.4336645
T. Mottershead, D. Barlow, B. Blind et al., Design and operation of a proton microscope for radiography at 800 MeV. Proceedings of the 2003 Particle Accelerator Conference. vol. 1, 702-704 (2003). https://ieeexplore.ieee.org/document/1289014https://ieeexplore.ieee.org/document/1289014doi: 10.1109/PAC.2003.1289014http://doi.org/10.1109/PAC.2003.1289014
S. Becker, M. Bussmann S. Raith et al., Characterization and tuning of ultrahigh gradient permanent magnet quadrupoles. Phys. Rev. Spec. Top. Accel. Beams. 12, 102801 (2009). doi: 10.1103/PhysRevSTAB.12.102801http://doi.org/10.1103/PhysRevSTAB.12.102801
R.D. Brown, J.R. Cost, Radiation effects in magnetic and superconducting materials. JOM. 42, 39-43 (1990). doi: 10.1007/BF03220872http://doi.org/10.1007/BF03220872
E.W. Blackmore, Radiation effects of protons on samarium-cobalt permanent magnets. IEEE Trans. Nucl. Sci. 32, 3669-3671 (1985). https://ieeexplore.ieee.org/abstract/document/4334463https://ieeexplore.ieee.org/abstract/document/4334463doi: 10.1109/TNS.1985.4334463http://doi.org/10.1109/TNS.1985.4334463
D. Cesar, J. Maxson, P. Musumeci et al., Demonstration of single-shot picosecond time-resolved MeV electron imaging using a compact permanent magnet quadrupole based lens. Phys. Rev. Lett. 117, 024801 (2016). doi: 10.1103/PhysRevLett.117.024801http://doi.org/10.1103/PhysRevLett.117.024801
H. Chen, L. Yan, Q. Tian et al., Commissioning the photoinjector of a gamma-ray light source. Phys. Rev. Accel. Beams. 22, 053403 (2019). doi: 10.1103/physrevaccelbeams.22.053403http://doi.org/10.1103/physrevaccelbeams.22.053403
P.W. Hawkes, Quadrupoles in Electron Lens Design. (Academic Press, 1970).
Y. Zhao, Z. Zhang, W. Gai et al., High energy electron radiography scheme with high spatial and temporal resolution in three dimension based on a e-LINAC. Laser Part. Beams 34, 338-342(2016). doi: 10.1017/s0263034616000124http://doi.org/10.1017/s0263034616000124
K. Makino, M. Berz, COSY INFINITY Version 9. Nucl. Instrum. Meth. A. 558, 346-350 (2006). https://www.sciencedirect.com/science/article/pii/S0168900205021522https://www.sciencedirect.com/science/article/pii/S0168900205021522doi: 10.1016/j.nima.2005.11.109http://doi.org/10.1016/j.nima.2005.11.109
S. Agostinelli, J. Allison, K. Amako et al., Geant4—a simulation toolkit. Nucl. Instrum. Meth. A. 506, 250-303 (2003). https://www.sciencedirect.com/science/article/pii/S0168900203013688https://www.sciencedirect.com/science/article/pii/S0168900203013688doi: 10.1016/S0168-9002(03)01368-8http://doi.org/10.1016/S0168-9002(03)01368-8
K. Floettmann, ASTRA, DESY, https://www.desy.de/mpyflo/https://www.desy.de/mpyflo/https://www.desy.de/mpyflo/https://www.desy.de/mpyflo/
J. Xiao, Z. Zhang, S. Cao et al., Areal density and spatial resolution of high energy electron radiography. Chin. Phys. B 27, 035202 (2018). doi: 10.1088/1674-1056/27/3/035202http://doi.org/10.1088/1674-1056/27/3/035202
J.H. Xiao, Y.C. Du, H.Q. Li et al., Ultrafast high energy electron lens radiography suitable for transient electromagnetic field diagnosis. J. Instrum. 17, P01033 (2022). doi: 10.1088/1748-0221/17/01/p01033http://doi.org/10.1088/1748-0221/17/01/p01033
Z. Zhou, Research on high spatiotemporal resolution high energy electron imaging and electron diffraction. Dissertation. (2019). https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CDFD dbname=CDFDLAST2022 filename=1021809246.nh uniplatform=NZKPT v=maeclVE51c15Nx8GoPQHyySLfLNpkf1lls2UJWDb1vVH7fzg-oHI5wlF3ZSS7-jahttps://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CDFD dbname=CDFDLAST2022 filename=1021809246.nh uniplatform=NZKPT v=maeclVE51c15Nx8GoPQHyySLfLNpkf1lls2UJWDb1vVH7fzg-oHI5wlF3ZSS7-jadoi: 10.27266/d.cnki.gqhau.2019.000630http://doi.org/10.27266/d.cnki.gqhau.2019.000630(in Chinese)
L. Zheng, J. Shao, Y. Du et al., Overestimation of thermal emittance in solenoid scans due to coupled transverse motion. Phys. Rev. Accel. Beams. 21, 122803 (2018). doi: 10.1103/physrevaccelbeams.21.122803http://doi.org/10.1103/physrevaccelbeams.21.122803
G. Manahan, E. Brunetti, C. Aniculaesei et al., Characterization of laser-driven single and double electron bunches with a permanent magnet quadrupole triplet and pepper-pot mask. New J. Phys. 16, 103006(2014). doi: 10.1088/1367-2630/16/10/103006http://doi.org/10.1088/1367-2630/16/10/103006
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution