1.Material Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
2.School of Materials & Energy, Lanzhou University, Lanzhou 730000, China
3.University of Chinese Academy of Sciences, Beijing 100049, China
* gh_du@impcas.ac.cn
Scan for full text
Cite this article
Hong-Jin Mou, Guang-Bo Mao, Jin-Quan Zhang, et al. Design of 50 MeV proton microbeam based on cyclotron accelerator. [J]. Nuclear Science and Techniques 34(6):92(2023)
Hong-Jin Mou, Guang-Bo Mao, Jin-Quan Zhang, et al. Design of 50 MeV proton microbeam based on cyclotron accelerator. [J]. Nuclear Science and Techniques 34(6):92(2023) DOI: 10.1007/s41365-023-01235-x.
High-energy proton microbeam facilities are powerful tools in space science, biology, and cancer therapy studies. The primary limitations of the 50 MeV proton microbeam system are the poor beam quality provided by the cyclotron and the problem of intense scattering in the slit position. Here, we present an optical design for a cyclotron-based 50 MeV high-energy proton microbeam system with a micron-sized resolution. The microbeam system, which has an Oxford triplet lens configuration, has relatively small spherical aberrations and is insensitive to changes in the beam divergence angle and momentum spread. In addition, the energy filtration included in the system can reduce the beam momentum spread from 1% to 0.02%. The effects of lens parasitic aberrations and the lens fringe field on the beam spot resolution are also discussed. In addition, owing to the severe scattering of 50 MeV protons in slit materials, a slit system model based on the Geant4 toolkit enables the quantitative analysis of scattered protons and secondary particles. For the slit system settings under a 10-micron final beam spot, very few scattered protons can enter the quadrupole lens system and affect the focusing performance of the microbeam system, but the secondary radiation of neutrons and gamma rays generated at the collimation system should be considered for the 50 MeV proton microbeam. These data demonstrate that a 50 MeV proton microbeam system with a micron-sized beam spot based on a cyclotron is feasible.
50 MeV protonMicrobeamBeam opticsAberrationsScattering
J.C. Chancellor, G.B. Scott, J.P. Sutton, Space Radiation: The Number One Risk to Astronaut Health beyond Low Earth Orbit. Life (Basel). 4, 491-510 (2014). doi: 10.3390/life4030491http://doi.org/10.3390/life4030491
A. Kronenberg, F.A. Cucinotta, Space radiation protection issues. Health Phys. 103, 556-567 (2012). doi: 10.1097/HP.0b013e3182690cafhttp://doi.org/10.1097/HP.0b013e3182690caf
G.D. Badhwar, P.M. O'Neill, Long-term modulation of galactic cosmic radiation and its model for space exploration. Adv. Space Res. 14, 749-757 (1994). doi: 10.1016/0273-1177(94)90537-1http://doi.org/10.1016/0273-1177(94)90537-1
F.A. Cucinotta, H. Nikjoo, D.T. Goodhead, The effects of delta rays on the number of particle-track traversals per cell in laboratory and space exposures. Radiat. Res. 150, 115-119 (1998). doi: 10.2307/3579651http://doi.org/10.2307/3579651
L.W. Townsend, F.A. Cucinotta, J.W. Wilson et al., Estimates of HZE particle contributions to SPE radiation exposures on interplanetary missions. Adv. Space Res. 14, 671-674 (1994). doi: 10.1016/0273-1177(94)90524-Xhttp://doi.org/10.1016/0273-1177(94)90524-X
J.A. Cookson, F.D. Pilling, The use of focused ion beams for analysis. Thin Solid Films. 19, 381-385 (1973). doi: 10.1016/0040-6090(73)90074-6http://doi.org/10.1016/0040-6090(73)90074-6
J.A. vanKan, A.A. Bettiol, F. Watt, Three-dimensional nanolithography using proton beam writing. Appl. Phys. Lett. 83, 1629-1631 (2003). doi: 10.1063/1.1604468http://doi.org/10.1063/1.1604468
F. Watt, M.B.H. Breese, A.A. Bettiol et al., Proton beam writing. Mater. Today. 10, 20-29 (2007). doi: 10.1016/S1369-7021(07)70129-3http://doi.org/10.1016/S1369-7021(07)70129-3
P. Barberet, H. Seznec, Advances in microbeam technologies and applications to radiation biology. Radiat. Prot. Dosim. 166, 182-187 (2015). doi: 10.1093/rpd/ncv192http://doi.org/10.1093/rpd/ncv192
K.-D. Greif, H.J. Brede, D. Frankenberg et al., The PTB single ion microbeam for irradiation of living cells. Nucl. Instrum. Meth. B 217, 505-512 (2004). doi: 10.1016/j.nimb.2003.11.082http://doi.org/10.1016/j.nimb.2003.11.082
C. Siebenwirth, C. Greubel, S.E. Drexler et al., Determination of the accuracy for targeted irradiations of cellular substructures at SNAKE. Nucl. Instrum. Meth. B 348, 137-142 (2015). doi: 10.1016/j.nimb.2015.01.064http://doi.org/10.1016/j.nimb.2015.01.064
G.H. Du, J.L. Guo, R.Q. Wu et al., The first interdisciplinary experiments at the IMP high energy microbeam. Nucl. Instrum. Meth. B 348, 18-22 (2015). doi: 10.1016/j.nimb.2015.01.066http://doi.org/10.1016/j.nimb.2015.01.066
C. Greubel, W. Assmann, C. Burgdorf et al., Scanning irradiation device for mice in vivo with pulsed and continuous proton beams. Radiat. Environ. Biophys. 50, 339-44 (2011). doi: 10.1007/s00411-011-0365-xhttp://doi.org/10.1007/s00411-011-0365-x
L.J. WU, H.T. K. , R.-P. Gerhard et al., Columbia University microbeam: development of an experimental system for targeting cells individually with counted particles. Nucl. Sci. Tech. 10, 143-148 (1999).
F. Watt, X. Chen, C.B. Chen et al., Whole cell structural imaging at 20 nanometre resolutions using MeV ions. Nucl. Instrum. Meth. B 306, 6-11 (2013). doi: 10.1016/j.nimb.2012.11.047http://doi.org/10.1016/j.nimb.2012.11.047
W.-T. Yang, X.-C. Du, Y.-H. Li et al., Single-event-effect propagation investigation on nanoscale system on chip by applying heavy-ion microbeam and event tree analysis. Nucl. Sci. Tech. 32, 106 (2021). doi: 10.1007/s41365-021-00943-6http://doi.org/10.1007/s41365-021-00943-6
Y.-Q. Yang, W.-C. Fang, X.-X. Huang et al., Static superconducting gantry-based proton CT combined with X-ray CT as prior image for FLASH proton therapy. Nucl. Sci. Tech. 34, 11 (2023). doi: 10.1007/s41365-022-01163-2http://doi.org/10.1007/s41365-022-01163-2
H. Zhang, J.-Z. Li, R. Hou et al., Design and development of an ACCT for the Shanghai advanced proton therapy facility. Nucl. Sci. Tech. 33, 126 (2022). doi: 10.1007/s41365-022-01106-xhttp://doi.org/10.1007/s41365-022-01106-x
X.-S. Sun, Y.-J. Li, J.-Y. Liu et al., Shortening the delivery time of proton therapy by real-time compensation method with raster scanning. Nucl. Sci. Tech. 33, 73 (2022). doi: 10.1007/s41365-022-01051-9http://doi.org/10.1007/s41365-022-01051-9
B. Qin, X. Liu, Q.-S. Chen et al., Design and development of the beamline for a proton therapy system. Nucl Sci Tech. 32, 138 (2021). doi: 10.1007/s41365-021-00975-yhttp://doi.org/10.1007/s41365-021-00975-y
C.G. Ren, S.J. Zhou, J.M. Che et al., A microbeam system of high energy ions at Fudan university. Nucl. Sci. Tech. 2, 13-18 (1991).
G. Datzmann, G. Dollinger, G. Hinderer et al., A superconducting multipole lens for focusing high energy ions. Nucl. Instrum. Meth. B 158, 74-80 (1999). doi: 10.1016/S0168-583X(99)00308-0http://doi.org/10.1016/S0168-583X(99)00308-0
J.S.C. Mckee, G.R. Smith, Y.H. Yeo et al., The manitoba automated high-energy proton microprobe (MA-HEM) and its application to research in the geological and biological sciences. Nucl. Instrum. Meth. B 40, 680-684 (1989). doi: 10.1016/0168-583X(89)91074-4http://doi.org/10.1016/0168-583X(89)91074-4
L.N. Sheng, M.T. Song, X.Q. Zhang et al., Design of the IMP microbeam irradiation system for 100 MeV/u heavy ions. Chinese Phys. C 33, 315 (2009). doi: 10.1088/1674-1137/33/4/016http://doi.org/10.1088/1674-1137/33/4/016
A. Ponomarov, G.H. Du, J.L. Guo et al., Beam optics of upgraded high energy heavy ion microbeam in Lanzhou. Nucl. Instrum. Meth. B 461, 10-15 (2019). doi: 10.1016/j.nimb.2019.09.002http://doi.org/10.1016/j.nimb.2019.09.002
T. Vallentin, M. Moser, S. Eschbaumer et al., A microbeam slit system for high beam currents. Nucl. Instrum. Meth. B 348, 43-47 (2015). doi: 10.1016/j.nimb.2014.12.015http://doi.org/10.1016/j.nimb.2014.12.015
M. Oikawa, T. Kamiya, M. Fukuda et al., Design of a focusing high-energy heavy ion microbeam system at the JAERI AVF cyclotron. Nucl. Instrum. Meth. B 210, 54-58 (2003). doi: 10.1016/S0168-583X(03)01007-3http://doi.org/10.1016/S0168-583X(03)01007-3
F. Watt, G.W. Grime, G.D. Blower et al., The Oxford 1 μm proton microprobe. Nucl. Instrum. Methods 197, 65-77 (1982). doi: 10.1016/0167-5087(82)90119-3http://doi.org/10.1016/0167-5087(82)90119-3
G.W. Grime, WinTRAX: A raytracing software package for the design of multipole focusing systems. Nucl. Instrum. Meth. B 306, 76-80 (2013). doi: 10.1016/j.nimb.2012.11.038http://doi.org/10.1016/j.nimb.2012.11.038
F. Méot, The ray-tracing code Zgoubi. Nucl. Instrum. Meth. A 427, 353-356 (1999). doi: 10.1016/S0168-9002(98)01508-3http://doi.org/10.1016/S0168-9002(98)01508-3
F. Méot, The ray-tracing code Zgoubi – Status. Nucl. Instrum. Meth. A 767, 112-125 (2014). doi: 10.1016/j.nima.2014.07.022http://doi.org/10.1016/j.nima.2014.07.022
M.B.H. Breese, D.N. Jamieson, P.J.C. King, Material analysis using a nuclear microprobe. J. Microsc-Oxford. 189, 99-100 (1996). doi: 10.1046/j.1365-2818.1998.0270c.xhttp://doi.org/10.1046/j.1365-2818.1998.0270c.x
C.G. Ryan, PIXE and the nuclear microprobe: Tools for quantitative imaging of complex natural materials. Nucl. Instrum. Meth. B 269, 2151-2162 (2011). doi: 10.1016/j.nimb.2011.02.046http://doi.org/10.1016/j.nimb.2011.02.046
V. Brazhnik, A. Dymnikov, R. Hellborg et al., The effect of lens arrangement in a triplet and in a Russian quadruplet on the demagnification and beam current in a microprobe. Nucl. Instrum. Meth. B 77, 29-34 (1993). doi: 10.1016/0168-583X(93)95518-Ahttp://doi.org/10.1016/0168-583X(93)95518-A
Y.X. Dou, D.N. Jamieson, J.L. Liu et al., GEANT4 models for the secondary radiation flux in the collimation system of a 300MeV proton microbeam. Physica Medica 32, 1841-1845 (2016). doi: 10.1016/j.ejmp.2016.10.008http://doi.org/10.1016/j.ejmp.2016.10.008
G.W. Grime, F. Watt, G.D. Blower et al., Real and parasitic aberrations of quadrupole probe-forming systems. Nucl. Instrum. Methods. 197, 97-109 (1982). doi: 10.1016/0167-5087(82)90123-5http://doi.org/10.1016/0167-5087(82)90123-5
S. Incerti, P. Barberet, R. Villeneuve et al., Simulation of cellular irradiation with the CENBG microbeam line using GEANT4. IEEE T. Nucl. Sci. 51, 1395-1401 (2004). doi: 10.1109/TNS.2004.832224http://doi.org/10.1109/TNS.2004.832224
L.N. Sheng, M.T. Song, X.Q. Zhang et al., High energy heavy ion microbeam irradiation facility at IMP. Nucl. Instrum. Meth. B 269, 2189-2192 (2011). doi: 10.1016/j.nimb.2011.02.075http://doi.org/10.1016/j.nimb.2011.02.075
G.H. Du, Techniques and Multi-disciplinary Applications of Ion Microbeam. Nucl. Phys. Rev. 29, 371 (2012). doi: 10.11804/NuclPhysRev.29.04.371http://doi.org/10.11804/NuclPhysRev.29.04.371
J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM – The stopping and range of ions in matter (2010). Nucl. Instrum. Meth. B 268, 1818-1823 (2010). doi: 10.1016/j.nimb.2010.02.091http://doi.org/10.1016/j.nimb.2010.02.091
S. Agostinelli, J. Allison, K. Amako et al., Geant4—a simulation toolkit. Nucl. Instrum. Meth. A 506, 250-303 (2003). doi: 10.1016/S0168-9002(03)01368-8http://doi.org/10.1016/S0168-9002(03)01368-8
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution