1.School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
*zhwentao@sjtu.edu.cn;
dzwang@sjtu.edu.cn
Scan for full text
Cite this article
Hui Yang, Xin-Yu Zhang, Wei-Guo Gu, et al. A novel method for gamma spectrum analysis of low-level and intermediate-level radioactive waste. [J]. Nuclear Science and Techniques 34(6):87(2023)
Hui Yang, Xin-Yu Zhang, Wei-Guo Gu, et al. A novel method for gamma spectrum analysis of low-level and intermediate-level radioactive waste. [J]. Nuclear Science and Techniques 34(6):87(2023) DOI: 10.1007/s41365-023-01236-w.
The uncertainty of nuclide libraries in the analysis of the gamma spectra of low- and intermediate-level radioactive waste (LILW) using existing methods produces unstable results. To address this problem, a novel spectral analysis method is proposed in this study. In this method, overlapping peaks are located using a continuous wavelet transform. An improved quadratic convolution method is proposed to calculate the widths of the peaks and establish a fourth-order filter model to estimate the Compton edge baseline with the overlapping peaks. Combined with the adaptive sensitive nonlinear iterative peak, this method can effectively subtracts the background. Finally, a function describing the peak shape as a filter is used to deconvolve the energy spectrum to achieve accurate qualitative and quantitative analyses of the nuclide without the aid of a nuclide library. Gamma spectrum acquisition experiments for standard point sources of Cs-137 and Eu-152, a segmented gamma scanning experiment for a 200 L standard drum, and a Monte Carlo simulation experiment for triple overlapping peaks using the closest energy of three typical LILW nuclides (Sb-125, Sb-124, and Cs-134) are conducted. The results of the experiments indicate that (1) the novel method and gamma vision (GV) with an accurate nuclide library have the same spectral analysis capability, and the peak area calculation error is less than 4%; (2) compared with the GV, the analysis results of the novel method are more stable; (3) the novel method can be applied to the activity measurement of LILW, and the error of the activity reconstruction at the equivalent radius is 2.4%; and (4) The proposed novel method can quantitatively analyze all nuclides in LILW without a nuclide library. This novel method can improve the accuracy and precision of LILW measurements, provide key technical support for the reasonable disposal of LILW, and ensure the safety of humans and the environment.
HPGe detectorlow-level and intermediate-level radioactive wasteGamma spectrum analysis methodDeconvolution methodContinuous wavelet transform
INTERNATIONAL ATOMIC ENERGY AGENCY, Classification of Radioactive Waste, IAEA Safety Standards Series No. GSG-1, IAEA, Vienna (2009)
INTERNATIONAL ATOMIC ENERGY AGENCY, Interim Storage of Radioactive Waste Packages, Technical Reports Series No. 390, IAEA, Vienna (1998)
INTERNATIONAL ATOMIC ENERGY AGENCY, Strategy and Methodology for Radioactive Waste Characterization, IAEA-TECDOC-1537, IAEA, Vienna (2007)
P. Ormai, A. Fritz, J. Solymosi, et al., Inventory determination of low and intermediate level radioactive waste of Paks Nuclear Power Plant origin. J. Radioanal. Nucl. Chem. Artic. 211, 443-451 (1996). doi: 10.1007/BF02039710http://doi.org/10.1007/BF02039710
M. Kashiwagi, H. Masui, Y. Denda, et al., ISO Standardization of the Scaling Factor Method for Low- and Intermediate Level Radioactive Wastes Generated at Nuclear Power Plants. In: 11th International Conference on Environmental Remediation and Radioactive Waste Management, Parts A and B. ASMEDC; 2007:625-629. doi: 10.1115/ICEM2007-7015http://doi.org/10.1115/ICEM2007-7015
Standard Guide for Making Quality Nondestructive Assay Measurements, Accessed October 12, 2020. https://compass.astm.org/download/C1592C1592M-WITHDRAWN.4230.pdfhttps://compass.astm.org/download/C1592C1592M-WITHDRAWN.4230.pdf
American Society for Testing and Materials, Standard Test Method for Nondestructive Assay of Special Nuclear Material in Low Density Scrap and Waste by Segmented Passive Gamma-Ray Scanning. doi: 10.1520/C1133_C1133M-10http://doi.org/10.1520/C1133_C1133M-10
Y.F. Bai, E. Mauerhofer, D.Z. Wang, et al., An improved method for the non-destructive characterization of radioactive waste by gamma scanning. Appl. Radiat. Isot. 67, 1897-1903 (2009). doi: 10.1016/j.apradiso.2009.05.017http://doi.org/10.1016/j.apradiso.2009.05.017
Z.L. Cheng, Z. Lu, Z. Huang, et al., An improved segmented gamma scanning for radioactive waste drums. Math. Biosci. Eng. 16, 4491-4505 (2010). doi: 10.3934/mbe.2019224http://doi.org/10.3934/mbe.2019224
Y.F. Bai, D.Z. Wang, M. Eric, et al., MC simulation of thermal neutron flux of large samples irradiated by 14 MeV neutrons. Nucl. Sci. Tech. 21(1):11-15 (2010).
C. Liu, W.G. Gu, N. Qian, et al., Study of image reconstruction using dynamic grids in tomographic gamma scanning. Nucl. Sci. Tech. 23,277-283 (2012)
N. Qian, T. Krings, E. Mauerhofer, et al., Analytical calculation of the collimated detector response for the characterization of nuclear waste drums by segmented gamma scanning. J. Radioanal. Nucl. Chem. 292, 1325-1328 (2012). doi: 10.1007/s10967-011-1601-1http://doi.org/10.1007/s10967-011-1601-1
W.G. Gu, C. Liu, N. Qian, et al., Study on detection simplification of tomographic gamma scanning using dynamic grids applied in the emission reconstruction. Ann. Nucl. Energy. 58, 113-123 (2013). doi: 10.1016/j.anucene.2013.02.031http://doi.org/10.1016/j.anucene.2013.02.031
Q. Nan, D.Z. Wang, C. Wang, et al., Collimated LaBr3 detector response function in radioactivity analysis of nuclear waste drums. Nucl. Sci. Tech. 24, 060203(2013)
W. Gu, K. Rao, D. Wang, et al., Semi-Tomographic Gamma Scanning Technique for Non-Destructive Assay of Radioactive Waste Drums. IEEE Trans. Nucl. Sci. 63, 2793-2800 (2016). doi: 10.1109/TNS.2016.2614964http://doi.org/10.1109/TNS.2016.2614964
W.G. Gu, D.Z. Wang, X.H. Tang et al., An Improved Gamma Scanning Assay Method for the 400-L Compacted Radioactive Waste Drum Based on the Segmented Equivalent Ring Source. IEEE Trans. Nucl. Sci. 66, 1889-1896 (2019). doi: 10.1109/TNS.2019.2920180http://doi.org/10.1109/TNS.2019.2920180
H. Yang, B. Dong, W.G. Gu et al., Transmission reconstruction algorithm by combining maximum-likelihood expectation maximization and a convolutional neural network for radioactive drum characterization. Appl. Radiat. Isot. 184, 110172 (2022). doi: 10.1016/j.apradiso.2022.110172http://doi.org/10.1016/j.apradiso.2022.110172
H. Yang, H. Zhou, B. Dong et al., A novel transmission reconstruction algorithm for radioactive drum characterization. In: Volume 9: Decontamination and Decommissioning, Radiation Protection, and Waste Management. American Society of Mechanical Engineers, V009T09A005 (2022). doi: 10.1115/ICONE29-90126http://doi.org/10.1115/ICONE29-90126
Office of the Federal Register, National Archives and Records Administration. 10 CFR 61 – Licensing requirements for land disposal of radioactive waste. Code of Federal Regulations, title 10, 153-179 (2016). https://www.govinfo.gov/app/details/CFR-2006-title10-vol2/CFR-2006-title10-vol2-part61https://www.govinfo.gov/app/details/CFR-2006-title10-vol2/CFR-2006-title10-vol2-part61 Accessed 26 June 2022
International Atomic Energy Agency, Determination and Use of Scaling Factors for Waste Characterization in Nuclear Power Plants, IAEA Nuclear Energy Series No. NW-T-1.18, IAEA, Vienna (2009)
M.I. Abbas, M.S. Badawi, I.N. Ruskov et al., Calibration of а single hexagonal NaI(Tl) detector using a new numerical method based on the efficiency transfer method. Nucl. Instrum. Methods Phys. Res. Sect. A 771, 110-114 (2015). doi: 10.1016/j.nima.2014.10.056http://doi.org/10.1016/j.nima.2014.10.056
H. Yang, W. Gu, X. Zhang, et al., Research on the γ spectrum-unfolding method of low- and intermediate-level radioactive waste based on LaBr3(Ce) detector. Radiat. Phys. Chem. 207, 110841 (2023). doi: 10.1016/j.radphyschem.2023.110841http://doi.org/10.1016/j.radphyschem.2023.110841
H. Yang, W. Gu, X. Zhang, et al., Research on the CdZnTe γ spectrum analysis method based on an intelligent dynamic library. J. Radioanal. Nucl. Chem. 332, 1847-1867 (2023). doi: 10.1007/s10967-023-08858-9http://doi.org/10.1007/s10967-023-08858-9
M.W. Rawool-Sullivan, R.J. Estep, D. Miko, Estimation of obliquely scattered gamma-ray response functions in the gross-count tomographic gamma scanner (GC-TGS) method. In: 1997 IEEE Nuclear Science Symposium Conference Record. 774-778 (1997). doi: 10.1109/NSSMIC.1997.672697http://doi.org/10.1109/NSSMIC.1997.672697
R. Venkataraman, M. Villani, S. Croft et al., An integrated Tomographic Gamma Scanning system for non-destructive assay of radioactive waste. Nucl. Instrum. Methods Phys. Res. Sect. A 579, 375-379 (2007). doi: 10.1016/j.nima.2007.04.125http://doi.org/10.1016/j.nima.2007.04.125
J.T. Routti, S.G. Prussin, Photopeak method for the computer analysis of gamma-ray spectra from semiconductor detectors. Nucl. Instrum. Methods. 72, 125-142 (1969). doi: 10.1016/0029-554X(69)90148-7http://doi.org/10.1016/0029-554X(69)90148-7
H. Cheng, Bao Hua Sun, L.H. Zhu, et al., Intrinsic background radiation of LaBr3(Ce) detector via coincidence measurements and simulations. Nucl. Sci. Tech. 31, 99 (2020). doi: 10.1007/s41365-020-00812-8http://doi.org/10.1007/s41365-020-00812-8
M.A. Mariscotti, A method for automatic identification of peaks in the presence of background and its application to spectrum analysis. Nucl. Instrum. Methods. 50, 309-320 (1967). doi: 10.1016/0029-554X(67)90058-4http://doi.org/10.1016/0029-554X(67)90058-4
INTERNATIONAL ATOMIC ENERGY AGENCY, Intercomparison of Gamma Ray Analysis Software Packages, IAEA-TECDOC-1011, IAEA, Vienna (1998)
Canberra. Genie 2000 Operations Manual. https://www3.nd.edu/~wzech/Genie%202000%20Operations%20Manual.pdfhttps://www3.nd.edu/~wzech/Genie%202000%20Operations%20Manual.pdf. Accessed 26 June 2022
I.A. Slavić, S.P. Bingulac, A simple method for full automatic gamma-ray spectra analysis. Nucl. Instrum. Methods. 84, 261-268 (1970). doi: 10.1016/0029-554X(70)90270-3http://doi.org/10.1016/0029-554X(70)90270-3
A. Robertson, W.V. Prestwich, T.J. Kennett, An automatic peak-extraction technique. Nucl. Instrum. Methods. 100, 317-324 (1972). doi: 10.1016/0029-554X(72)90701-Xhttp://doi.org/10.1016/0029-554X(72)90701-X
I.A. Slavić, Automatic analysis of gamma-ray spectra. Nucl. Instrum. Methods. 112, 253-260 (1973). doi: 10.1016/0029-554X(73)90804-5http://doi.org/10.1016/0029-554X(73)90804-5
H.P. Blok, J.C. de Lange, J.W. Schotman, A new peak search method for an automatic spectrum analysis program. Nucl. Instrum. Methods. 128, 545-556 (1975). doi: 10.1016/0029-554X(75)90523-6http://doi.org/10.1016/0029-554X(75)90523-6
C.J. Sullivan, S.E. Garner, K.B. Butterfield, Wavelet analysis of gamma-ray spectra. In: IEEE Symposium Conference Record Nuclear Science 2004. 281-286 (2004). doi: 10.1109/NSSMIC.2004.1462198http://doi.org/10.1109/NSSMIC.2004.1462198
J.W. Wang, W.G. Gu, H. Yang et al., Analytical method for γ energy spectrum of radioactive waste drum based on deep neural network. Nucl. Tech. 45, 53-59 (2022). doi: 10.11889/j.0253-3219.2022.hjs.45.040501http://doi.org/10.11889/j.0253-3219.2022.hjs.45.040501 (in Chinese)
ORTEC. GammaVision Users Manual. https://manualzz.com/doc/o/nbci8/ortec gammavision-v7-user-manual-783620h-mda--presethttps://manualzz.com/doc/o/nbci8/ortec gammavision-v7-user-manual-783620h-mda--preset. Accessed 18 June 2022
Clayton, E. PIXAN: the Lucas Heights PIXE analysis computer package.AAEC/M--113(1986). ISBN 0 642 59841 X
Miroslav Morháč, An algorithm for determination of peak regions and baseline elimination in spectroscopic data. Nucl. Instrum. Methods Phys. Res. Sect. A 600, 478-487 (2009). doi: 10.1016/j.nima.2008.11.132http://doi.org/10.1016/j.nima.2008.11.132
M.C. Ali Santoro, M.J. Anagnostakis, T. Boshkova, et al., Determining the probability of locating peaks using computerized peak-location methods in gamma-ray spectra as a function of the relative peak-area uncertainty. Appl. Radiat. Isot. 155, 108920 (2020). doi: 10.1016/j.apradiso.2019.108920http://doi.org/10.1016/j.apradiso.2019.108920
Knoll, G.F. Radiation Detection and Measurement, 4th Edition, (Wiley, Hoboken, 2010)
International Electrotechnical Commission. IEC 61453:2007 Nuclear instrumentation - Scintillation gamma ray detector systems for the assay of radionuclides - Calibration and routine tests. https://webstore.iec.ch/publication/5471https://webstore.iec.ch/publication/5471. Accessed December 7, 2022
M. Morháč, J. Kliman, V. Matoušek, et al., Efficient one- and two-dimensional gold deconvolution and its application to γ-ray spectra decomposition. Nucl. Instrum. Methods Phys. Res. Sect. A. 401, 385-408 (1997). doi: 10.1016/S0168-9002(97)01058-9http://doi.org/10.1016/S0168-9002(97)01058-9
C.M. Salgado, L.E.B. Brandão, R. Schirru, et al., Validation of a NaI(Tl) detector’s model developed with MCNP-X code. Prog. Nucl. Energy. 59, 19-25 (2012). doi: 10.1016/j.pnucene.2012.03.006http://doi.org/10.1016/j.pnucene.2012.03.006
M. Morháč, V. Matoušek, J. Kliman, Optimized multidimensional nonoscillating deconvolution. J. Comput. Appl. Math. 140, 639-658 (2002). doi: 10.1016/S0377-0427(01)00521-0http://doi.org/10.1016/S0377-0427(01)00521-0
M. Morháč, Deconvolution methods and their applications in the analysis of -ray spectra. Nucl. Instrum. Methods Phys. Res. Sect. A 559, 119-123 (2006). doi: 10.1016/j.nima.2005.11.129http://doi.org/10.1016/j.nima.2005.11.129
R. Gold, An iterative unfolding method for response matrices. United States (1964).doi: 10.2172/4634295http://doi.org/10.2172/4634295.
M. Morháč, V. Matoušek, High-resolution boosted deconvolution of spectroscopic data. J. Comput. Appl. Math. 235, 1629-1640 (2011). doi: 10.1016/j.cam.2010.09.005http://doi.org/10.1016/j.cam.2010.09.005
S. Steenstrup, A simple procedure for fitting a backgound to a certain class of measured spectra. J. Appl. Crystallogr. 14, 226-229 (1981). doi: 10.1107/S0021889881009242http://doi.org/10.1107/S0021889881009242
S.A. Gerasimov, Simple method for background subtraction in gamma-ray spectra. Int. J. Rad. Appl. Instrum. 43, 1529-1531 (1992). doi: 10.1016/0883-2889(92)90186-Ihttp://doi.org/10.1016/0883-2889(92)90186-I
C.V. Hampton, B. Lian, W.C. McHarris, Fast-Fourier-transform spectral enhancement techniques for γ-ray spectroscopy. Nucl. Instrum. Meth. Phys. Res. Sect. A 353(1-3), 280-284 (1994) doi: 10.1016/0168-9002(94)91657-8http://doi.org/10.1016/0168-9002(94)91657-8
C.G. Ryan, E. Clayton, W.L. Griffin et al., SNIP, a statistics-sensitive background treatment for the quantitative analysis of PIXE spectra in geoscience applications. Nucl. Instrum. Meth. Phys. Res. Sect. B 34, 396-402 (1988). doi: 10.1016/0168-583X(88)90063-8http://doi.org/10.1016/0168-583X(88)90063-8
C.J. Sullivan, M.E. Martinez, S.E. Garner, Wavelet analysis of sodium iodide spectra. IEEE Nuclear Science Symposium Conference Record, 2005, Fajardo, PR, USA, 302-306 (2005). doi: 10.1109/NSSMIC.2005.1596258http://doi.org/10.1109/NSSMIC.2005.1596258
S. Lovejoy, D. Schertzer, Haar wavelets, fluctuations and structure functions: convenient choices for geophysics. Nonlinear Process. Geophys. 19, 513-527 (2012). doi: 10.5194/npg-19-513-2012http://doi.org/10.5194/npg-19-513-2012
J.M. Gregoire, D. Dale, R.B. van Dover, A wavelet transform algorithm for peak detection and application to powder x-ray diffraction data. Rev. Sci. Instrum. 82, 015105 (2011). doi: 10.1063/1.3505103http://doi.org/10.1063/1.3505103
J. Uher, G. Roach, J. Tickner, Peak fitting and identification software library for high resolution gamma-ray spectra. Nucl. Instrum. Methods Phys. Res. Sect. A 619, 457-459 (2010). doi: 10.1016/j.nima.2009.12.086http://doi.org/10.1016/j.nima.2009.12.086
A. Likar, A peak-search method based on spectrum convolution. J. Phys. Appl. Phys. 36, 1903-1909 (2003). doi: 10.1088/0022-3727/36/15/323http://doi.org/10.1088/0022-3727/36/15/323
M. Morháč, J. Kliman, V. Matoušek, et al., Background elimination methods for multidimensional coincidence γ-ray spectra. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 401, 113-132 (1997). doi: 10.1016/S0168-9002(97)01023-1http://doi.org/10.1016/S0168-9002(97)01023-1
J.L. Coolidge, The Story of the Binomial Theorem. Am. Math. Mon. 56, 147-157 (1949). doi: 10.1080/00029890.1949.11999350http://doi.org/10.1080/00029890.1949.11999350
M.S. Badawi, A.M. El-Khatib, M.E. Krar, New numerical simulation approach to calibrate the NaI(Tl) detectors array using non-axial extended spherical sources. J. Instrum. 8, P11005 (2013). doi: 10.1088/1748-0221/8/11/P11005http://doi.org/10.1088/1748-0221/8/11/P11005
M.S. Badawi, M. Abd-Elzaher, A.A. Thabet et al., An empirical formula to calculate the full energy peak efficiency of scintillation detectors. Appl. Radiat. Isot. 74, 46-49 (2013). doi: 10.1016/j.apradiso.2012.12.011http://doi.org/10.1016/j.apradiso.2012.12.011
Canberra.NDA 2000. https://www.mirion.com/products/nda-2000-non-destructive-assay-softwarehttps://www.mirion.com/products/nda-2000-non-destructive-assay-software. Accessed 15 Nov.2022
American Society for Testing and Materials. ASTM E181-17 Standard Test Methods for Detector Calibration and Analysis of Radionuclides. doi: 10.1520/E0181-17http://doi.org/10.1520/E0181-17
ORTEC. Comparison of Gamma Ray Nondestructive Assay Measurement Techniques. https://www.ortec-online.com/-/media/ametekortec/technical-papers/waste-assay/comparison-gamma-ray-nondestructive-assay-measurement-techniques.pdf?la=en&revision=415c3b6e-e813-4930-abb1-c79c5870c644&hash=2D10984B0F16B476B43B17F6A332258Bhttps://www.ortec-online.com/-/media/ametekortec/technical-papers/waste-assay/comparison-gamma-ray-nondestructive-assay-measurement-techniques.pdf?la=en&revision=415c3b6e-e813-4930-abb1-c79c5870c644&hash=2D10984B0F16B476B43B17F6A332258B. Accessed 19 Nov.2022
S. Agostinelli, J. Allison, K. Amako, et al., Geant4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 506, 250-303 (2003). doi: 10.1016/S0168-9002(03)01368-8http://doi.org/10.1016/S0168-9002(03)01368-8
W. Tang, J.G. Liang, Y. Ge, et al., A method for neutron-induced gamma spectra decomposition analysis based on Geant4 simulation. Nucl. Sci. Tech. 33, 154 (2022). doi: 10.1007/s41365-022-01144-5http://doi.org/10.1007/s41365-022-01144-5
A.M. El-Khatib, M.S. Badawi, A.A. Thabet, et al., Well-type NaI(Tl) detector efficiency using analytical technique and ANGLE 4 software based on radioactive point sources located out the well cavity. Chin. J. Phys. 54, 338-346 (2016). doi: 10.1016/j.cjph.2016.03.019http://doi.org/10.1016/j.cjph.2016.03.019
M.T. Haj-Heidari, M.J. Safari, H. Afarideh, et al., Method for developing HPGe detector model in Monte Carlo simulation codes. Radiat. Meas. 88, 1-6 (2016). doi: 10.1016/j.radmeas.2016.02.035http://doi.org/10.1016/j.radmeas.2016.02.035
Y.M. Gómez, H.A.C. Águila, C.M.A. Hernández, et al., Monte Carlo simulation of the efficiency response of a well-type HPGe detector at 46.54 keV (2015). http://scielo.sld.cu/pdf/nuc/n57/nuc015715.pdfhttp://scielo.sld.cu/pdf/nuc/n57/nuc015715.pdf. Accessed 28 Jan.2023
M.S. Badawi, S.I. Jovanovic, A.A. Thabet, et al., Calibration of 4π NaI(Tl) detectors with coincidence summing correction using new numerical procedure and ANGLE4 software. AIP Adv. 7, 035005 (2017). doi: 10.1063/1.4978214http://doi.org/10.1063/1.4978214
M. Ješkovský, A. Javorník, R. Breier, et al., Experimental and Monte Carlo determination of HPGe detector efficiency. J. Radioanal. Nucl. Chem. 322, 1863-1869 (2019). doi: 10.1007/s10967-019-06856-4http://doi.org/10.1007/s10967-019-06856-4
American Society for Testing and Materials. American National Standard Calibration and Use of Germanium Spectrometers for the Measurement of Gamma-Ray Emission Rates of Radionuclides. ANSI Std N42.14-1991, vol., no., pp.1-76, 30(1991). doi: 10.1109/IEEESTD.1991.101072http://doi.org/10.1109/IEEESTD.1991.101072.
IEEE Standard Test Procedures for Germanium Gamma-Ray Detectors, IEEE Std 325-1996. 0_1- Published online 1997. doi: 10.1109/IEEESTD.1997.82400http://doi.org/10.1109/IEEESTD.1997.82400
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution