1.School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China
2.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
3.University of Chinese Academy of Sciences, Beijing 100049, China
4.College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
5.College of Science, Shanghai University, Shanghai 200444, China
hujiangtao@sinap.ac.cn
*wuguozhong@sinap.ac.cn
Scan for full text
Cite this article
Wan-Ning Ren, Xin-Xin Feng, Yu-Long He, et al. Branched fibrous amidoxime adsorbent with ultrafast adsorption rate and high amidoxime utilization for uranium extraction from seawater. [J]. Nuclear Science and Techniques 34(6):90(2023)
Wan-Ning Ren, Xin-Xin Feng, Yu-Long He, et al. Branched fibrous amidoxime adsorbent with ultrafast adsorption rate and high amidoxime utilization for uranium extraction from seawater. [J]. Nuclear Science and Techniques 34(6):90(2023) DOI: 10.1007/s41365-023-01237-9.
Direct collection of uranium from low-uranium systems via adsorption remains challenging. Fibrous sorbent materials with amidoxime (AO) groups are promising adsorbents for uranium extraction from seawater. However, low AO adsorption group utilization remains an issue. We herein fabricated a branched structure containing AO groups on polypropylene/polyethylene spun-laced nonwoven (PP/PE SNW) fibers using grafting polymerization induced by radiation (RIGP) to improve AO utilization. The chemical structures, thermal properties, and surface morphologies of the raw and treated PP/PE SNW fibers were studied. The results show that an adsorptive functional layer with a branching structure was successfully anchored to the fiber surface. The adsorption properties were investigated using batch adsorption experiments in simulated seawater with an initial uranium concentration of 500 μg·L,-1, (pH 4, 25 °C). The maximum adsorption capacity of the adsorbent material was 137.3 mg·g,-1, within 24 h; moreover, the uranyl removal reached 96% within 240 min. The adsorbent had an AO utilization rate of 1/3.5 and was stable over a pH range of 4–10, with good selectivity and reusability, demonstrating its potential for seawater uranium extraction.
Radiation graft technologyBranching structureHigh amidoxime utilizationSeawater uranium extractionUltrafast adsorption
H. Guo, P. Mei, J. Xiao et al., Carbon materials for extraction of uranium from seawater. Chemosphere. 278, 130411 (2021). doi: 10.1016/j.chemosphere.2021.130411http://doi.org/10.1016/j.chemosphere.2021.130411
X. Li, Z. Liu, M. Huang, Purification of uranium-containing wastewater by adsorption: a review of research on resin materials. J. Radioanal. Nucl. Ch. 331, 3043-3075 (2022). doi: 10.1007/s10967-022-08370-6http://doi.org/10.1007/s10967-022-08370-6
C. Huang, L. Xu, X. Xu et al., Highly amidoxime utilization ratio of porous poly(cyclic imide dioxime) nanofiber for effective uranium extraction from seawater. Chem. Eng. J. 443, 136312 (2022). doi: 10.1016/j.cej.2022.136312http://doi.org/10.1016/j.cej.2022.136312
Y.M. Khawassek, A.M. Masoud, M.H. Taha, et al., Kinetics and thermodynamics of uranium ion adsorption from waste solution using Amberjet 1200 H as cation exchanger. J. Radioanal. Nucl. Ch. 315, 493-502 (2018). doi: 10.1007/s10967-017-5692-1http://doi.org/10.1007/s10967-017-5692-1
R. Qadeer, J. Hanif, M. Khan, et al., UPTAKE OF URANIUM IONS BY MOLECULAR-SIEVE. Radiochim. Acta. 68, 197-201 (1995). doi: 10.1524/ract.1995.68.3.197http://doi.org/10.1524/ract.1995.68.3.197.
C.W. Abney, R.T. Mayes, T. Saito, et al., Materials for the Recovery of Uranium from Seawater. Chem. Rev. 117, 13935-14013 (2017). doi: 10.1021/acs.chemrev.7b00355http://doi.org/10.1021/acs.chemrev.7b00355
J. Ao, X. Xu, Y. Li, et al., Research progress in uranium extraction from seawater. J. Radiat. Res. Radiat. 37, 26 (2019). CNKI:SUN:FYFG.0.2019-02-001
T. Chen, K. Yu, C. Dong, et al., Advanced photocatalysts for uranium extraction: Elaborate design and future perspectives. Coordin. Chem. Rev. 467, 214615 (2022). doi: 10.1016/j.ccr.2022.214615http://doi.org/10.1016/j.ccr.2022.214615
M. Kanno, PRESENT STATUS OF STUDY ON EXTRACTION OF URANIUM FROM SEA-WATER. J. Nucl. Sci. Technol. 21, 1-9 (1984). doi: 10.1080/18811248.1984.9731004http://doi.org/10.1080/18811248.1984.9731004
C.J. Leggett, F. Endrizzi, L. Rao, Scientific Basis for Efficient Extraction of Uranium from Seawater, II: Fundamental Thermodynamic and Structural Studies. Ind. Eng. Chem. Res. 55, 4257-4263 (2016). doi: 10.1021/acs.iecr.5b03688http://doi.org/10.1021/acs.iecr.5b03688
T. Sahyoun, A. Arrault, R. Schneider, Amidoximes and Oximes: Synthesis, Structure, and Their Key Role as NO Donors. Molecules. 24 (2019). doi: 10.3390/molecules24132470http://doi.org/10.3390/molecules24132470
A.Y. Zhang, T. Asakura, G. Uchiyama, The adsorption mechanism of uranium(VI) from seawater on a macroporous fibrous polymeric adsorbent containing amidoxime chelating functional group. React. Funct. Polym. 57, 67-76 (2003). doi: 10.1016/j.reactfunctpolym.2003.07.005http://doi.org/10.1016/j.reactfunctpolym.2003.07.005
J. Xiong, Y. Fan, F. Luo, Grafting functional groups in metal-organic frameworks for U(VI) sorption from aqueous solutions. Dalton T. 49, 12536-12545 (2020). doi: 10.1039/D0DT02088Ehttp://doi.org/10.1039/D0DT02088E
F. Chi, S. Zhang, J. Wen, et al., Functional polymer brushes for highly efficient extraction of uranium from seawater. J. Mater. Sci. 54, 3572-3585 (2019). doi: 10.1007/s10853-018-3040-7http://doi.org/10.1007/s10853-018-3040-7
X. Xu, L. Xu, J. Ao, et al., Ultrahigh and economical uranium extraction from seawater via interconnected open-pore architecture poly(amidoxime) fiber. J. Mater. Chem. A. 8, 22032-22044 (2020). doi: 10.1039/D0TA07180Chttp://doi.org/10.1039/D0TA07180C
R. Li, H. Ma, Z. Xing, et al., Synergistic effects of different co-monomers on the uranium adsorption performance of amidoximated polyethylene nonwoven fabric in natural seawater. Radioanal. Nucl. Ch. 315, 111-117 (2018). doi: 10.1007/s10967-017-5639-6http://doi.org/10.1007/s10967-017-5639-6
R. Li, L. Pang, M. Zhang, et al., Preparation of polypropylene fibrous adsorbents for extraction of uranium from seawater by radiation grafting method. Nucl. Sci. Tech. 40, 050301 (2017). doi: 10.11889/j.0253-3219.2017.hjs.40.050301http://doi.org/10.11889/j.0253-3219.2017.hjs.40.050301
N. Tang, J. Liang, C. Niu, et al., Amidoxime-based materials for uranium recovery and removal. J. Mater. Chem. A. 8, 7588-7625 (2020). doi: 10.1039/C9TA14082Dhttp://doi.org/10.1039/C9TA14082D
Z. Zhao, G. Cheng, Y. Zhang, et al., Metal-Organic-Framework Based Functional Materials for Uranium Recovery: Performance Optimization and Structure/Functionality-Activity Relationships. Chempluschem. 86, 1177-1192 (2021). doi: 10.1002/cplu.202100315http://doi.org/10.1002/cplu.202100315
R.-H. Ding, X. Xu, C. Huang, et al., Development of a Fibrous Adsorbent Prepared Via Green Vapor-Phase Grafting Polymerization for Uranium Extraction. Acs Omega. 6, 29675-29684 (2021). doi: 10.1021/acsomega.1c04048http://doi.org/10.1021/acsomega.1c04048
A.T. Naikwadi, B.K. Sharma, K.D. Bhatt, et al., Gamma Radiation Processed Polymeric Materials for High Performance Applications: A Review. Front. Chem. 10, 837111 (2022). doi: 10.3389/fchem.2022.837111http://doi.org/10.3389/fchem.2022.837111
M. Komatsu, T. Kawakami, J.-I. Kanno, et al., Two-Stage Grafting onto Polyethylene Fiber by Radiation-Induced Graft Polymerization and Atom Transfer Radical Polymerization. J. Appl. Polym. Sci. 115, 3369-3375 (2010). doi: 10.1002/app.31451http://doi.org/10.1002/app.31451
T. Saito, S. Brown, S. Chatterjee, et al., Uranium recovery from seawater: development of fiber adsorbents prepared via atom-transfer radical polymerization. J. Mater. Chem. A. 2, 14674-14681 (2014). doi: 10.1039/C4TA03276Dhttp://doi.org/10.1039/C4TA03276D
P. Loganathan, G. Naidu, S. Vigneswaran, Mining valuable minerals from seawater: a critical review. Environ. Sci-Wat. Res. 3, 37-53 (2017). doi: 10.1039/C6EW00268Dhttp://doi.org/10.1039/C6EW00268D
X. Xu, H. Yang, Z.G. Khalil, et al., Bromocatechol conjugates from a Chinese marine red alga, Symphyocladia latiuscula. Phytochemistry. 158, 20-25 (2019). doi: 10.1016/j.phytochem.2018.10.026http://doi.org/10.1016/j.phytochem.2018.10.026
S. Xie, X. Liu, B. Zhang, et al., Electrospun nanofibrous adsorbents for uranium extraction from seawater. J. Mater. Chem. A. 3, 2552-2558 (2015). doi: 10.1039/C4TA06120Ahttp://doi.org/10.1039/C4TA06120A
B. Zhang, X. Guo, S. Xie, et al., Synergistic nanofibrous adsorbent for uranium extraction from seawater. RSC Adv. 6, 81995-82005 (2016). doi: 10.1039/C6RA18785Dhttp://doi.org/10.1039/C6RA18785D
H. Zhao, X. Liu, M. Yu, et al., A Study on the Degree of Amidoximation of Polyacrylonitrile Fibers and Its Effect on Their Capacity to Adsorb Uranyl Ions. Ind. Eng. Chem. Res. 54, 3101-3106 (2015). doi: 10.1021/ie5045605http://doi.org/10.1021/ie5045605
C. Tissot, G.M. Pooley, M.A. Hadadi, et al., A highly regenerable phosphate-based adsorbent for Uranium in seawater: Characterization and performance assessment using U-233 tracer. Sep. Sci. Technol. 57, 388-407 (2022). doi: 10.1080/01496395.2021.1917612http://doi.org/10.1080/01496395.2021.1917612
C.J. Leggett, F. Endrizzi, L. Rao, Scientific Basis for Efficient Extraction of Uranium from Seawater, II: Fundamental Thermodynamic and Structural Studies. Ind. Eng. Chem. Res. 55, 4257-4263 (2015). doi: 10.1021/acs.iecr.5b03688http://doi.org/10.1021/acs.iecr.5b03688
H. Yang, Y. Liu, Z. Chen et al. Emerging technologies for uranium extraction from seawater. Sci. China Chem. 65, 2335-2337 (2022). doi: 10.1007/s11426-022-1358-1http://doi.org/10.1007/s11426-022-1358-1
H. Gu, X. Liu, S. Wang et al. COF-based composites: Extraordinary removal performance for heavy metals and radionuclides from aqueous solutions. Reviews Env.Contamination (formerly:Residue Reviews) 260, 23 (2022). doi: 10.1007/s44169-022-00018-6http://doi.org/10.1007/s44169-022-00018-6
Y.W. Cai, M. Fang, B.W. Hu et al., Efficient extraction of U(VI) ions from solutions. Nucl. Sci. Tech. 34, 2 (2023). doi: 10.1007/s41365-022-01154-3http://doi.org/10.1007/s41365-022-01154-3
E.-L. Burton, M. Woodhead, P. Coates, et al., Reactive grafting of glycidyl methacrylate onto polypropylene. J. Appl. Polym. Sci. 117, 2707-2714 (2010). doi: 10.1002/app.31085http://doi.org/10.1002/app.31085
Q. Gao, J. Hu, R. Li, et al., Radiation synthesis of a new amidoximated UHMWPE fibrous adsorbent with high adsorption selectivity for uranium over vanadium in simulated seawater. Radiat. Phys. Chem. 122, 1-8 (2016). doi: 10.1016/j.radphyschem.2015.12.023http://doi.org/10.1016/j.radphyschem.2015.12.023
X. Feng, L. Qiu, M. Zhang, et al., Preparation of amidoxime-based ultra-high molecular weight polyethylene fiber for removing uranium from fluorine-containing wastewater. Nucl. Sci. Tech. 43, 020301 (2020). CNKI:SUN:HJSU.0.2020-02-003
E. Rosenberg, G. Pinson, R. Tsosie, et al., Uranium remediation by ion exchange and sorption methods: A critical review. Johnson Matthey Tech. 60, 59-77 (2016). doi: 10.1595/205651316X690178http://doi.org/10.1595/205651316X690178
D. Wang, J. Song, J. Wen et al., Significantly enhanced uranium extraction from seawater with mass produced fully amidoximated nanofiber adsorbent. Adv. Energy Mater. 8, 180267 (2018). doi: 10.1002/aenm.201802607http://doi.org/10.1002/aenm.201802607
J. Cui, L. Zhang, Metallurgical recovery of metals from electronic waste: a review. J. Hazard Mater. 158, 228-256 (2008). doi: 10.1016/j.jhazmat.2008.02.001http://doi.org/10.1016/j.jhazmat.2008.02.001
S. Liu, Y. Yang, T. Liu et al., Recovery of uranium(VI) from aqueous solution by 2-picolylamine functionalized poly(styrene-co-maleic anhydride) resin. J. Colloid Interface Sci. 497, 385-392 (2017). doi: 10.1016/j.jcis.2017.02.062http://doi.org/10.1016/j.jcis.2017.02.062
X. Xu, X.J. Ding, J.X. Ao et al., Preparation of amidoxime-based PE/PP fibers for extraction of uranium from aqueous solution. Nucl. Sci. Tech. 30, 20 (2019). doi: 10.1007/s41365-019-0543-0http://doi.org/10.1007/s41365-019-0543-0
Y. Yue, R.T. Mayes, J. Kim et al., Seawater uranium sorbents: preparation from a mesoporous copolymer initiator by atom-transfer radical polymerization. Angew Chem. Int. Ed. Engl. 52, 13458-13462 (2013). doi: 10.1002/anie.201307825http://doi.org/10.1002/anie.201307825
L. Xu, J.T. Hu, H.J. Ma et al., Amidoxime-based adsorbents prepared by cografting acrylic acid with acrylonitrile onto HDPE fiber for the recovery of uranium from seawater. Nucl. Sci. Tech. 28, 45 (2017). doi: 10.1007/s41365-017-0198-7http://doi.org/10.1007/s41365-017-0198-7
P. Liu, Q. Yu, Y. Xue et al., Adsorption performance of U(VI) by amidoxime-based activated carbon. J. Radioanal. Nucl. Ch. 324, 813-822 (2020). doi: 10.1007/s10967-020-07111-xhttp://doi.org/10.1007/s10967-020-07111-x
L. Pang, L. Zhang, J. Hu et al., High-performance functionalized polyethylene fiber for the capture of trace uranium in water. J. Radioanal. Nucl. Ch. 314, 2393-2403 (2017). doi: 10.1007/s10967-017-5603-5http://doi.org/10.1007/s10967-017-5603-5
Y. He, L. Mu, M. Wang et al., Efficient removal of trace uranium from nuclear effluents using irradiation-functionalized fibrous adsorbents with very high salt tolerance. Chem. Eng. J. 461 (2023). doi: 10.1016/j.cej.2023.141978http://doi.org/10.1016/j.cej.2023.141978
Q. Sun, B. Aguila, J. Perman et al., Bio-inspired nano-traps for uranium extraction from seawater and recovery from nuclear waste. Nat. Commun. 9, 1644 (2018). doi: 10.1038/s41467-018-04032-yhttp://doi.org/10.1038/s41467-018-04032-y
M. Zhang, M. Yuan, M. Zhang et al., Efficient removal of uranium from diluted aqueous solution with hydroxypyridone functionalized polyethylene nonwoven fabrics. Radiat. Phys. Chem. 171 (2020) doi: 10.1016/j.radphyschem.2020.108742http://doi.org/10.1016/j.radphyschem.2020.108742
Z. Zeng, Y. Wei, L. Shen, et al., Cationically Charged Poly(amidoxime)-Grafted Polypropylene Nonwoven Fabric for Potential Uranium Extraction from Seawater. Ind. Eng. Chem. Res. 54, 8699-8705 (2015). doi: 10.1021/acs.iecr.5b01852http://doi.org/10.1021/acs.iecr.5b01852
Z. Li, Q. Meng, Y. Yang, et al., Constructing amidoxime-modified porous adsorbents with open architecture for cost-effective and efficient uranium extraction. Chem. Sci. 11, 4747-4752 (2020). doi: 10.1039/D0SC00249Fhttp://doi.org/10.1039/D0SC00249F
M. Hao, Z. Chen, X. Liu et al., Converging cooperative functions into the nanospace of covalent organic frameworks for efficient uranium extraction from seawater. CCS Chemistry. 4(7), 2294-2307(2022). doi: 10.31635/ccschem.022.202201897http://doi.org/10.31635/ccschem.022.202201897.
M. Hao, Y. Xie, X. Liu et al., Modulating uranium extraction performance of multivariate covalent organic frameworks through donor-acceptor linkers and amidoxime nanotraps. JACS Au. Jan 3;(1):239-251 (2023) doi: 10.1021/jacsau.2c00614http://doi.org/10.1021/jacsau.2c00614
M. Zhang, Q. Gao, C. Yang et al., Preparation of Amidoxime-Based Nylon-66 Fibers for Removing Uranium from Low-Concentration Aqueous Solutions and Simulated Nuclear Industry Effluents. Ind. Eng. Chem. Res. 55, 10523-10532 (2016). doi: 10.1021/acs.iecr.6b02652http://doi.org/10.1021/acs.iecr.6b02652
S. Liu, Y. Yang, T. Liu et al., Recovery of uranium(VI) from aqueous solution by 2-picolylamine functionalized poly(styrene- co -maleic anhydride) resin. J. Colloid Interf. Sci. 497, 385-392 (2017). doi: 10.1016/j.jcis.2017.02.062http://doi.org/10.1016/j.jcis.2017.02.062
M. Piechowicz, R. Chiarizia, S. Skanthakumar et al., Leveraging Actinide Hydrolysis Chemistry for Targeted Th and U Separations using Amidoxime-Functionalized Poly(HIPE)s. Chemphyschem. 21, 1157-1165 (2020). doi: 10.1002/cphc.202000155http://doi.org/10.1002/cphc.202000155
X. Chen, C. Wan, R. Yu et al., Fabrication of amidoximated polyacrylonitrile nanofibrous membrane by simultaneously biaxial stretching for uranium extraction from seawater. Desalination. 486, 114447 (2020). doi: 10.1016/j.desal.2020.114447http://doi.org/10.1016/j.desal.2020.114447
X. Xu, H. Zhang, J. Ao et al., 3D hierarchical porous amidoxime fibers speed up uranium extraction from seawater. Energy Environ. Sci. 12, 1979-1988 (2019). doi: 10.1039/C9EE00626Ehttp://doi.org/10.1039/C9EE00626E
S. Ma, L. Huang, L. Ma et al., Efficient uranium capture by polysulfide/layered double hydroxide composites. J. Am. Chem. Soc. 137, 3670-3677 (2015). doi: 10.1021/jacs.5b00762http://doi.org/10.1021/jacs.5b00762
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution