1.China Institute of Atomic Energy, Beijing 102413, China
2.School of Science, Huzhou University, Huzhou 313000, China
3.Department of Physics, Tsinghua University, Beijing 100084, China
4.Guangxi Key Laboratory of Nuclear Physics and Technology, Guangxi Normal University, Guilin 541004, China
†zhyx@ciae.ac.cn
Scan for full text
Cite this article
Fang-Yuan Wang, Jun-Ping Yang, Xiang Chen, et al. Probing nucleon effective mass splitting with light particle emission. [J]. Nuclear Science and Techniques 34(6):94(2023)
Fang-Yuan Wang, Jun-Ping Yang, Xiang Chen, et al. Probing nucleon effective mass splitting with light particle emission. [J]. Nuclear Science and Techniques 34(6):94(2023) DOI: 10.1007/s41365-023-01241-z.
The main objective of this study was to investigate the impact of effective mass splitting on heavy-ion-collision observables. We first analyzed correlations between different nuclear matter parameters obtained from 119 effective Skyrme interaction sets. The values of the correlation coefficients illustrate that the magnitude of effective mass splitting is crucial for tight constraints on the symmetry energy via heavy-ion collisions. The ,86,Kr + ,208,Pb system at beam energies ranging from 25A to 200A MeV was simulated within the framework of the improved quantum molecular dynamics model (ImQMD-Sky). Our calculations show that the slopes of the spectra of ln [,Y,(n)/,Y,(p)] and ln [,Y,(t)/,Y,(,3,He)], which are the logarithms of the neutron to proton and triton to helium-3 yield ratios, are directly related to effective mass splitting and can be used to probe the effective mass splitting.
Effective mass splittingSymmetry energyHeavy-ion collisionsSkyrme interaction
B.A. Li, B.J. Cai, L.W. Chen, et al., Nucleon effective masses in neutron-rich matter. Progress in Particle and Nuclear Physics 99, 29-119 (2018). doi: 10.1016/j.ppnp.2018.01.001http://doi.org/10.1016/j.ppnp.2018.01.001
J. Jeukenne, A. Lejeune, C. Mahaux, Many-body theory of nuclear matter. Physics Reports 25, 83-174 (1976). doi: 10.1016/0370-1573(76)90017-Xhttp://doi.org/10.1016/0370-1573(76)90017-X
X.L. Shang, A. Li, Z.Q. Miao, et al., Nucleon effective mass in hot dense matter. Phys. Rev. C 101, 065801 (2020). doi: 10.1103/PhysRevC.101.065801http://doi.org/10.1103/PhysRevC.101.065801
A. Li, J.N. Hu, X.L. Shang, et al., Nonrelativistic nucleon effective masses in nuclear matter: Brueckner-hartree-fock model versus relativistic hartree-fock model. Phys. Rev. C 93, 015803 (2016). doi: 10.1103/PhysRevC.93.015803http://doi.org/10.1103/PhysRevC.93.015803
P.S. Shternin, Transport coefficients of leptons in superconducting neutron star cores. Phys. Rev. D 98, 063015 (2018). doi: 10.1103/PhysRevD.98.063015http://doi.org/10.1103/PhysRevD.98.063015
A.Y. Potekhin1, A.I. Chugunov, G. Chabrier, Thermal evolution and quiescent emission of transiently accreting neutron stars. Astron. Astrophys. 629, 16 (2019). doi: 10.1051/0004-6361/201936003http://doi.org/10.1051/0004-6361/201936003
M. Baldo, G.F. Burgio, Properties of the nuclear medium. Reports on Progress in Physics 75, 026301 (2012). doi: 10.1088/0034-4885/75/2/026301http://doi.org/10.1088/0034-4885/75/2/026301
D. Page, J.M. Lattimer, M. Prakash, et al., Minimal cooling of neutron stars: A new paradigm. The Astrophysical Journal Supplement Series 155, 623 (2004). doi: 10.1086/424844http://doi.org/10.1086/424844
A. Dehghan Niri, H.R. Moshfegh, P. Haensel, Nuclear correlations and neutrino emissivity from the neutron branch of the modified urca process. Phys. Rev. C 93, 045806 (2016). doi: 10.1103/PhysRevC.93.045806http://doi.org/10.1103/PhysRevC.93.045806
A. Dehghan Niri, H.R. Moshfegh, P. Haensel, Role of nuclear correlations and kinematic effects on neutrino emission from the modified urca processes. Phys. Rev. C 98, 025803 (2018). doi: 10.1103/PhysRevC.98.025803http://doi.org/10.1103/PhysRevC.98.025803
P.S. Shternin, M. Baldo, P. Haensel, In-medium enhancement of the modified urca neutrino reaction rates. Phys. Lett. B 786, 28-34 (2018). doi: 10.1016/j.physletb.2018.09.035http://doi.org/10.1016/j.physletb.2018.09.035
J.B. Wei, G.F. Burgio, H.J. Schulze, Neutron star cooling with microscopic equations of state. Monthly Notices of the Royal Astronomical Society 484, 5162-5169 (2019). https://academic.oup.com/mnras/article-pdf/484/4/5162/27787299/stz336.pdfhttps://academic.oup.com/mnras/article-pdf/484/4/5162/27787299/stz336.pdf, doi: 10.1093/mnras/stz336http://doi.org/10.1093/mnras/stz336
Y. Zhang, M. Tsang, Z. Li, et al., Constraints on nucleon effective mass splitting with heavy ion collisions. Physics Letters B 732, 186-190 (2014). doi: 10.1016/j.physletb.2014.03.030http://doi.org/10.1016/j.physletb.2014.03.030
D.D.S. Coupland, M. Youngs, Z. Chajecki, et al., Probing effective nucleon masses with heavy-ion collisions. Phys. Rev. C 94, 011601 (2016). doi: 10.1103/PhysRevC.94.011601http://doi.org/10.1103/PhysRevC.94.011601
Z.Q. Feng, Effective mass splitting of neutron and proton and isospin emission in heavy-ion collisions. Nuclear Physics A 878, 3-13 (2012). doi: 10.1016/j.nuclphysa.2012.01.014http://doi.org/10.1016/j.nuclphysa.2012.01.014
W.J. Xie, J. Su, L. Zhu, et al., Neutron-proton effective mass splitting in a boltzmann-langevin approach. Phys. Rev. C 88, 061601 (2013). doi: 10.1103/PhysRevC.88.061601http://doi.org/10.1103/PhysRevC.88.061601
J. Su, L. Zhu, C.Y. Huang, et al., Effects of symmetry energy and effective k-mass splitting on central 96Ru(96Zr)+96Zr(96Ru) collisions at 50 to 400 mev/nucleon. Phys. Rev. C 96, 024601 (2017). doi: 10.1103/PhysRevC.96.024601http://doi.org/10.1103/PhysRevC.96.024601
G.F. Wei, Q.J. Zhi, X.W. Cao, et al., Examination of an isospin-dependent single-nucleon momentum distribution for isospin-asymmetric nuclear matter in heavy-ion collisions. Nucl. Scie. Tech. 31, 71 (2020). doi: 10.1007/s41365-020-00779-6http://doi.org/10.1007/s41365-020-00779-6
B.A. Li, Constraining the neutron-proton effective mass splitting in neutron-rich matter. Phys. Rev. C 69, 064602 (2004). doi: 10.1103/PhysRevC.69.064602http://doi.org/10.1103/PhysRevC.69.064602
X.H. Li, W.J. Guo, B.A. Li, et al., Neutron-proton effective mass splitting in neutron-rich matter at normal density from analyzing nucleon-nucleus scattering data within an isospin dependent optical model. Physics Letters B 743, 408-414 (2015). doi: 10.1016/j.physletb.2015.03.005http://doi.org/10.1016/j.physletb.2015.03.005
C. Xu, B.A. Li, L.W. Chen, Symmetry energy, its density slope, and neutron-proton effective mass splitting at normal density extracted from global nucleon optical potentials. Phys. Rev. C 82, 054607 (2010). doi: 10.1103/PhysRevC.82.054607http://doi.org/10.1103/PhysRevC.82.054607
Z. Zhang, L.W. Chen, Isospin splitting of the nucleon effective mass from giant resonances in 208Pb. Phys. Rev. C 93, 034335 (2016). doi: 10.1103/PhysRevC.93.034335http://doi.org/10.1103/PhysRevC.93.034335
H.Y. Kong, J. Xu, L.W. Chen, et al., Constraining simultaneously nuclear symmetry energy and neutron-proton effective mass splitting with nucleus giant resonances using a dynamical approach. Phys. Rev. C 95, 034324 (2017). doi: 10.1103/PhysRevC.95.034324http://doi.org/10.1103/PhysRevC.95.034324
J. Su, L. Zhu, C. Guo, Constraints on the effective mass splitting by the isoscalar giant quadrupole resonance. Phys. Rev. C 101, 044606 (2020). doi: 10.1103/PhysRevC.101.044606http://doi.org/10.1103/PhysRevC.101.044606
J. Xu, W.T. Qin, Nucleus giant resonances from an improved isospin-dependent boltzmann-uehling-uhlenbeck transport approach. Phys. Rev. C 102, 024306 (2020). doi: 10.1103/PhysRevC.102.024306http://doi.org/10.1103/PhysRevC.102.024306
P. Morfouace, C. Tsang, Y. Zhang, et al., Constraining the symmetry energy with heavy-ion collisions and bayesian analyses. Physics Letters B 799, 135045 (2019). doi: 10.1016/j.physletb.2019.135045http://doi.org/10.1016/j.physletb.2019.135045
X.H. Zhou, Physics opportunities at the new facility hiaf. Nuclear Physics Review 35, 339 (2018). doi: 10.11804/NuclPhysRev.35.04.339http://doi.org/10.11804/NuclPhysRev.35.04.339
P.N. Ostroumov, S. Cogan, K. Fukushima, et al., Heavy ion beam acceleration in the first three cryomodules at the facility for rare isotope beams at michigan state university. Phys. Rev. Accel. Beams 22, 040101 (2019). doi: 10.1103/PhysRevAccelBeams.22.040101http://doi.org/10.1103/PhysRevAccelBeams.22.040101
H. Sakurai, Ri beam factory project at riken. Nuclear Physics A 805, 526c-532c (2008). INPC 2007. doi: 10.1016/j.nuclphysa.2008.02.291http://doi.org/10.1016/j.nuclphysa.2008.02.291
B. Hong, Y. Go, G. Jhang, et al., Plan for nuclear symmetry energy experiments using the lamps system at the rib facility raon in korea. The European Physical Journal A 50, 11 (2014). doi: 10.1140/epja/i2014-14049-2http://doi.org/10.1140/epja/i2014-14049-2
W.P. Liu, The prospects for accelerator-based nuclear physics facilities. PHYSICS 43, 150 (2014). doi: 10.7693/wl20140301http://doi.org/10.7693/wl20140301
Y. Zhang, M. Tsang, Z. Li, et al., Constraints on nucleon effective mass splitting with heavy ion collisions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics 732,. doi: 10.1016/j.physletb.2014.03.030http://doi.org/10.1016/j.physletb.2014.03.030
M. Mocko, M.B. Tsang, Z.Y. Sun, et al., Projectile fragmentation of 86Kr at 64 mev/nucleon. Phys. Rev. C 76, 014609 (2007). doi: 10.1103/PhysRevC.76.014609http://doi.org/10.1103/PhysRevC.76.014609
M.B. Tsang, Y. Zhang, P. Danielewicz, et al., Constraints on the density dependence of the symmetry energy. Phys. Rev. Lett. 102, 122701 (2009). doi: 10.1103/PhysRevLett.102.122701http://doi.org/10.1103/PhysRevLett.102.122701
J. Estee, Charged pion emission from neutron-rich heavy ion collisions for studies on the symmetry energy. Ph.D. thesis 188 (2020). doi: 10.25335/s6mp-5668http://doi.org/10.25335/s6mp-5668
L. Li, F.Y. Wang, Y.X. Zhang, Isospin effects on intermediate mass fragments at intermediate energy-heavy ion collisions. Nucl. Scie. Tech. 33, 58 (2022). doi: 10.1007/s41365-022-01050-whttp://doi.org/10.1007/s41365-022-01050-w
L.W. Chen, C.M. Ko, B.A. Li, Determination of the stiffness of the nuclear symmetry energy from isospin diffusion. Phys. Rev. Lett. 94, 032701 (2005). doi: 10.1103/PhysRevLett.94.032701http://doi.org/10.1103/PhysRevLett.94.032701
F. Guan, X. Diao, Y. Wang, et al., A compact spectrometer for heavy ion experiments in the fermi energy regime. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1011, 165592 (2021). doi: 10.1016/j.nima.2021.165592http://doi.org/10.1016/j.nima.2021.165592
Y.J. Wang, F.H. Guan, X.Y. Diao, et al., Cshine for studies of hbt correlation in heavy ion reactions. Nuclear Science and Techniques 32, 4 (2021). doi: 10.1007/s41365-020-00842-2http://doi.org/10.1007/s41365-020-00842-2
Y. Wang, F. Guan, X. Diao, et al., Observing the ping-pong modality of the isospin degree of freedom in cluster emission from heavy-ion reactions. Phys. Rev. C 107, L041601 (2023). doi: 10.1103/PhysRevC.107.L041601http://doi.org/10.1103/PhysRevC.107.L041601
X.Y. Diao, F.H. Guan, Y.J. Wang, et al., Reconstruction of fission events in heavy ion reactions with the compact spectrometer for heavy ion experiment. Nucl. Scie. Tech. 33, 40 (2022). doi: 10.1007/s41365-022-01024-yhttp://doi.org/10.1007/s41365-022-01024-y
Z. Sun, W.L. Zhan, Z.Y. Guo, et al., Ribll, the radioactive ion beam line in lanzhou. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 503, 496-503 (2003). doi: 10.1016/S0168-9002(03)01005-2http://doi.org/10.1016/S0168-9002(03)01005-2
H.L. Wang, Z. Wang, C.S. Gao, et al., Design and tests of the prototype beam monitor of the csr external target experiment. Nuclear Science and Techniques 33, 36 (2022). doi: 10.1007/s41365-022-01021-1http://doi.org/10.1007/s41365-022-01021-1
Y. Zhang, Z. Li, Probing the density dependence of the symmetry potential with peripheral heavy-ion collisions. Phys. Rev. C 71, 024604 (2005). doi: 10.1103/PhysRevC.71.024604http://doi.org/10.1103/PhysRevC.71.024604
J. Rizzo, M. Colonna, M. Di Toro, et al., Transport properties of isospin effective mass splitting. Nuclear Physics A 732, 202-217 (2004). doi: 10.1016/j.nuclphysa.2003.11.057http://doi.org/10.1016/j.nuclphysa.2003.11.057
Y. Zhang, N. Wang, Q.F. Li, et al., Progress of quantum molecular dynamics model and its applications in heavy ion collisions. Front. Phys. 15, 54301 (2020). doi: 10.1007/s11467-020-0961-9http://doi.org/10.1007/s11467-020-0961-9
T.H.R. Skyrme, Cvii. the nuclear surface. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 1, 1043-1054 (1956). doi: 10.1080/14786435608238186http://doi.org/10.1080/14786435608238186
J. Yang, Y. Zhang, N. Wang, et al., Influence of the treatment of initialization and mean-field potential on the neutron to proton yield ratios. Phys. Rev. C 104, 024605 (2021). doi: 10.1103/PhysRevC.104.024605http://doi.org/10.1103/PhysRevC.104.024605
Y. Zhang, Z. Li, Elliptic flow and system size dependence of transition energies at intermediate energies. Phys. Rev. C 74, 014602 (2006). doi: 10.1103/PhysRevC.74.014602http://doi.org/10.1103/PhysRevC.74.014602
Y. Zhang, M. Liu, C.J. Xia, et al., Constraints on the symmetry energy and its associated parameters from nuclei to neutron stars. Phys. Rev. C 101, 034303 (2020). doi: 10.1103/PhysRevC.101.034303http://doi.org/10.1103/PhysRevC.101.034303
F. Zhang, J. Su, Probing neutron–proton effective mass splitting using nuclear stopping and isospin mix in heavy-ion collisions in gev energy region. Nucl. Scie. Tech. 31, 77 (2020). doi: 10.1007/s41365-020-00787-6http://doi.org/10.1007/s41365-020-00787-6
H. Wolter, et al., Transport model comparison studies of intermediate-energy heavy-ion collisions. Prog. Part. Nucl. Phys. 125, 103962 (2022). doi: 10.1016/j.ppnp.2022.103962http://doi.org/10.1016/j.ppnp.2022.103962
J. Xu, et al., Understanding transport simulations of heavy-ion collisions at 100A and 400A MeV: Comparison of heavy-ion transport codes under controlled conditions. Phys. Rev. C 93, 044609 (2016). doi: 10.1103/PhysRevC.93.044609http://doi.org/10.1103/PhysRevC.93.044609
Y. Zhang, Z. Li, Elliptic flow and system size dependence of transition energies at intermediate energies. Phys. Rev. C 74, 014602 (2006). doi: 10.1103/PhysRevC.74.014602http://doi.org/10.1103/PhysRevC.74.014602
E. Chabanat, P. Bonche, P. Haensel, et al., A skyrme parametrization from subnuclear to neutron star densities. Nuclear Physics A 627, 710-746 (1997). doi: 10.1016/S0375-9474(97)00596-4http://doi.org/10.1016/S0375-9474(97)00596-4
M.B. Tsang, W.A. Friedman, C.K. Gelbke, et al., Isotopic scaling in nuclear reactions. Phys. Rev. Lett. 86, 5023-5026 (2001). doi: 10.1103/PhysRevLett.86.5023http://doi.org/10.1103/PhysRevLett.86.5023
M.B. Tsang, C.K. Gelbke, X.D. Liu, et al., Isoscaling in statistical models. Phys. Rev. C 64, 054615 (2001). doi: 10.1103/PhysRevC.64.054615http://doi.org/10.1103/PhysRevC.64.054615
A. Ono, P. Danielewicz, W.A. Friedman, et al., Isospin fractionation and isoscaling in dynamical simulations of nuclear collisions. Phys. Rev. C 68, 051601 (2003). doi: 10.1103/PhysRevC.68.051601http://doi.org/10.1103/PhysRevC.68.051601
S. Das Gupta, A. Mekjian, The thermodynamic model for relativistic heavy ion collisions. Physics Reports 72, 131-183 (1981). doi: 10.1016/0370-1573(81)90012-0http://doi.org/10.1016/0370-1573(81)90012-0
G. Fai, A.Z. Mekjian, Minimal information and statistical descriptions of nuclear fragmentation. Physics Letters B 196, 281-284 (1987). doi: 10.1016/0370-2693(87)90731-3http://doi.org/10.1016/0370-2693(87)90731-3
A.S. Botvina, O.V. Lozhkin, W. Trautmann, Isoscaling in light-ion induced reactions and its statistical interpretation. Phys. Rev. C 65, 044610 (2002). doi: 10.1103/PhysRevC.65.044610http://doi.org/10.1103/PhysRevC.65.044610
Z. Chajecki, M. Youngs, D.D.S. Coupland, et al., Scaling properties of light-cluster production. (2014). arXiv:1402.5216
A. Di Bucchianico, Coefficient of Determination (R2), (John Wiley & Sons, Ltd, 2008). doi: 10.1002/9780470061572.eqr173http://doi.org/10.1002/9780470061572.eqr173
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution