1.School of Physics, Beihang University, Beijing 100191, China
2.School of Physics and Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191, China
†dypang@buaa.edu.cn
Scan for full text
Cite this article
Wei-Jia Kong, Dan-Yang Pang. Theoretical uncertainties of (d,3He) and (3He,d) reactions owing to the uncertainties of optical model potentials. [J]. Nuclear Science and Techniques 34(6):95(2023)
Wei-Jia Kong, Dan-Yang Pang. Theoretical uncertainties of (d,3He) and (3He,d) reactions owing to the uncertainties of optical model potentials. [J]. Nuclear Science and Techniques 34(6):95(2023) DOI: 10.1007/s41365-023-01242-y.
The theoretical uncertainties of single proton transfer cross-sections of the (,3,He,d) and (d,3,He) reactions, owing to the uncertainties of the entrance- and exit-channel optical model potentials, are examined with the ,30,Si(,3,He,d),31,P,13,B(d,3,He),12,Be, and ,34,S(,3,He,d),35,Cl reactions at incident energies of 25, 46, and 25 MeV, respectively, within the framework of the distorted wave Born approximation. The differential cross-sections at the first peaks in the angular distributions of these reactions are found to have uncertainties of approximately 5%, owing to the uncertainties in the optical model potentials from 20000 calculations of randomly sampled parameters. This amount of uncertainty is found to be nearly independent of the angular momentum transfer and the target masses within the studied range of incident energies. Uncertainties in the single proton spectroscopic factors obtained by matching the theoretical and experimental cross-sections at different scattering angles are also discussed.
proton transfer reactionsoptical model potentialsspectroscopic factors
P. Bém, V. Burjan, V. Kroha et al., Asymptotic normalization coefficients for from 13C(3He,d)14N. Phys. Rev. C 62, 024320 (2000). doi: 10.1103/PhysRevC.62.024320http://doi.org/10.1103/PhysRevC.62.024320
A.M. Mukhamedzhanov, P. Bém, V. Burjan et al., Asymptotic normalization coefficients from the 20Ne(3He, d)21Na reaction and astrophysical factor for 20Ne(p,γ)21Na Nucl. Phys. Rev. C 73, 035806 (2006). doi: 10.1103/PhysRevC.73.035806http://doi.org/10.1103/PhysRevC.73.035806
N. Burtebayev, J.T. Burtebayeva, N.V. Glushchenko et al., Effects of t- and α-transfer on the spectroscopic information from the Li6(He3,d)Be7 reaction. Nucl. Phys. A 909, 20 (2013). doi: 10.1016/j.nuclphysa.2013.04.008http://doi.org/10.1016/j.nuclphysa.2013.04.008
C. Wen, Y.P. Xu, D.Y. Pang et al., Chin. Quenching of neutron spectroscopic factors of radioactive carbon isotopes with knockout reactions within a wide energy range. Chinese Phys. C 41, 054104 (2017). doi: 10.1088/1674-1137/41/5/054104http://doi.org/10.1088/1674-1137/41/5/054104
W. Liu, J.L. Lou, Y.L. Ye et al., Experimental study of intruder components in light neutron-rich nuclei via single-nucleon transfer reaction. Nucl. Sci. Tech. 31, 20 (2020).doi: 10.1007/s41365-020-0731-yhttp://doi.org/10.1007/s41365-020-0731-y
T. Aumann, C. Barbieri, D. Bazin et al., Quenching of single-particle strength from direct reactions with stable and rare-isotope beams. Prog. Part. Nucl. Phys. 118, 103847 (2021). doi: 10.1016/j.ppnp.2021.103847http://doi.org/10.1016/j.ppnp.2021.103847
W. Liu, J.L. Lou, Y.L. Ye et al., New investigation of low-lying states in 12Be via a 2H(13B,3He) reaction. Phys. Rev. C 105, 034613 (2022). doi: 10.1103/PhysRevC.105.034613http://doi.org/10.1103/PhysRevC.105.034613
B.P. Kay, T.L. Tang, I.A. Tolstukhin et al., Quenching of single-particle strength in A=15 nuclei. Phys. Rev. Lett. 129, 152501 (2022). doi: 10.1103/PhysRevLett.129.152501http://doi.org/10.1103/PhysRevLett.129.152501
R.J. Philpott, W.T. Pinkston, G.R. Satchler, Some studies of realistic form factors for nucleon-transfer reactions. Nucl. Phys. A 119, 241 (1968). doi: 10.1016/0375-9474(68)90300-Xhttp://doi.org/10.1016/0375-9474(68)90300-X
R.C. Johnson, Theory of the A(d, p)B reaction as a tool for nuclear structure studies. J. Phys. G Nucl. Part. Phys. 41, 094005 (2014). doi: 10.1088/0954-3899/41/9/094005http://doi.org/10.1088/0954-3899/41/9/094005
J. D. McDonnell, N. Schunck, D. Higdon et al., Uncertainty quantification for nuclear density functional theory and information content of new measurements. Phys. Rev. Lett. 114, 122501 (2015). doi: 10.1103/PhysRevLett.114.122501http://doi.org/10.1103/PhysRevLett.114.122501
A.E. Lovell, F.M. Nunes, M. Catacora-Rios et al., Recent advances in the quantification of uncertainties in reaction theory. J. Phys. G Nucl. Part. Phys. 48, 014001 (2021). doi: 10.1088/1361-6471/abba72http://doi.org/10.1088/1361-6471/abba72
M.B. Tsang, J. Lee, S.C. Su et al., Survey of excited state neutron spectroscopic factors for Z=8–28 nuclei. Phys. Rev. Lett. 102, 062501 (2009). doi: 10.1103/PhysRevLett.102.062501http://doi.org/10.1103/PhysRevLett.102.062501
C.J. Kramer, H.P. Blok, L. Lapikas, A consistent analysis of (e,e’p) and (d,3He) experiments. Nucl. Phys. A 679, 267 (2001). doi: 10.1016/S0375-9474(00)00379-1http://doi.org/10.1016/S0375-9474(00)00379-1
A. Gade, P. Adrich, D. Bazin et al., Reduction of spectroscopic strength: Weakly-bound and strongly-bound single-particle states studied using one-nucleon knockout reactions. Phys. Rev. C 77, 044306 (2008). doi: 10.1103/PhysRevC.77.044306http://doi.org/10.1103/PhysRevC.77.044306
J.A. Tostevin and A. Gade, Systematics of intermediate-energy single-nucleon removal cross-sections. Phys. Rev. C 90, 057602 (2014). doi: 10.1103/PhysRevC.90.057602http://doi.org/10.1103/PhysRevC.90.057602
J.A. Tostevin and A. Gade, Updated systematics of intermediate-energy single-nucleon removal cross-sections. Phys. Rev. C 103, 054610 (2021). doi: 10.1103/PhysRevC.103.054610http://doi.org/10.1103/PhysRevC.103.054610
Y.P. Xu, D.Y. Pang, X.Y. Yun et al., Proton–neutron asymmetry independence of reduced single-particle strengths derived from (p,d) reactions. Phys. Lett. B 790, 308 (2019). doi: 10.1016/j.physletb.2019.01.034http://doi.org/10.1016/j.physletb.2019.01.034
W. Nan, B. Guo, C.J. Lin et al., First proof-of-principle experiment with the post-accelerated isotope separator on-line beam at BRIF: measurement of the angular distribution of 23Na + 40Ca elastic scattering. Nucl. Sci. Tech. 32, 53 (2021). doi: 10.1007/s41365-021-00889-9http://doi.org/10.1007/s41365-021-00889-9
H. Leeb and E. W. Schmid, A physical interpretation of the discrete ambiguities in the optical potential for composite particles. Z. Physik A 296, 51 (1980). doi: 10.1007/BF01415614http://doi.org/10.1007/BF01415614
M.E. Brandan, S.H. Fricke, K. W. McVoy, Resolution of potential ambiguities through farside angular structure: Data summary. Phys. Rev. C 38, 673 (1988). doi: 10.1103/PhysRevC.38.673http://doi.org/10.1103/PhysRevC.38.673
X.D. Liu, M.A. Famiano, W.G. Lynch et al., Systematic extraction of spectroscopic factors from 12C(d,p)13C and 13C(p,d)12C reactions. Phys. Rev. C 69, 064313 (2004). doi: 10.1103/PhysRevC.69.064313http://doi.org/10.1103/PhysRevC.69.064313
X.Y. Yun, D.Y. Pang, Y.P. Xu et al., What kind of optical model potentials should be used for deuteron stripping reactions? Sci. China-Phys. Mech. Astron. 63, 222011 (2020). doi: 10.1007/s11433-019-9389-6http://doi.org/10.1007/s11433-019-9389-6
R.L. Varner, W.J. Thompson, T.L. McAbee et al., A global nucleon optical model potential. Phys. Rep. 201, 57 (1991). doi: 10.1016/0370-1573(91)90039-Ohttp://doi.org/10.1016/0370-1573(91)90039-O
A.J. Koning, J.P. Delaroche, Local and global nucleon optical models from 1 keV to 200 MeV. Nucl. Phys. A 713, 231 (2003). doi: 10.1016/S0375-9474(02)01321-0http://doi.org/10.1016/S0375-9474(02)01321-0
Y.L. Xu, H.R. Guo, Y.L. Han et al., Helium-3 global optical model potential with energies below 250 MeV. Sci. China. Phys. Mech. Astro. 54, 2005 (2011). doi: 10.1007/s11433-011-4488-5http://doi.org/10.1007/s11433-011-4488-5
D.Y. Pang, P. Roussel-Chomaz, H. Savajols et al., Global optical model potential for A=3 projectiles. Phys. Rev. C 79, 024615 (2009). doi: 10.1103/PhysRevC.79.024615http://doi.org/10.1103/PhysRevC.79.024615
D.Y. Pang, W.M. Dean, A.M. Mukhamedzhanov, Optical model potential of A=3 projectiles for 1p-shell nuclei. Phys. Rev. C 91, 024611 (2015). doi: 10.1103/PhysRevC.91.024611http://doi.org/10.1103/PhysRevC.91.024611
Y. Zhang, D.Y. Pang, J.L. Lou, Optical model potential for deuteron elastic scattering with 1p-shell nuclei. Phys. Rev. C 94, 014619 (2016). doi: 10.1103/PhysRevC.94.014619http://doi.org/10.1103/PhysRevC.94.014619
J. Vernotte, G. Berrier-Ronsin, J. Kalifa et al., Spectroscopic factors from one-proton stripping reactions on sd-shell nuclei: experimental measurements and shell-model calculations. Nucl. Phys. A 571, 1 (1994). doi: 10.1016/0375-9474(94)90339-5http://doi.org/10.1016/0375-9474(94)90339-5
J. Lee, D.Y. Pang, Y.L. Han et al., Proton Spectroscopic Factors Deduced from Helium-3 Global Phenomenological and Microscopic Optical Model Potentials. Chin. Phys. Lett. 31, 092103 (2014). doi: 10.1088/0256-307X/31/9/092103http://doi.org/10.1088/0256-307X/31/9/092103
I. Brida, Steven C. Pieper, and R. B. Wiringa, Quantum Monte Carlo calculations of spectroscopic overlaps in A≤7 nuclei. Phys. Rev. C 84, 024319 (2011). doi: 10.1103/PhysRevC.84.024319http://doi.org/10.1103/PhysRevC.84.024319
I.J. Thompson, Coupled reaction channels calculations in nuclear physics. Computer Physics Reports 7, 167 (1988). doi: 10.1016/0167-7977(88)90005-6http://doi.org/10.1016/0167-7977(88)90005-6
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution