1.School of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou 466000, China
2.Department of Physics, Zhejiang SCI-TECH University, Hangzhou 310018, China
3.School of Physics, Nankai University, Tianjin 300071, China
4.School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
†Hanjinzhong@zknu.edu.cn
‡whk2007@163.com
Scan for full text
Cite this article
Jin-Zhong Han, Shuai Xu, Amir Jalili, et al. Investigation of the level spectra of nuclei in the northeast region of doubly magic 40Ca with intruder orbit
Jin-Zhong Han, Shuai Xu, Amir Jalili, et al. Investigation of the level spectra of nuclei in the northeast region of doubly magic 40Ca with intruder orbit
This study utilizes large-scale shell model calculations with the extended pairing and multipole-multipole force model (EPQQM) to investigate low-lying states in the nuclei of ,42,Ca,42,Sc, and ,42-44,Ti. The model space in this study includes the ,fp, shell as well as the intruder ,g,9/2, orbit, which accurately reproduces the positive parity levels observed in the aforementioned nuclei and predicts high-energy states with negative parity coupled with the intruder ,g,9/2,. The study further predicts two different configurations in ,43,Ti at around 6 MeV, specifically ,, and ,πf,7/2,g,9/2,vf,7/2, both of which involve the intruder orbit ,g,9/2,. The levels coupled with the intruder ,g,9/2, in ,44,Ti are predicted to lie between 7 and 11 MeV. The inclusion of the intruder orbit ,g,9/2, is crucial for the exploration of high-energy states in the northeast region of the doubly magic nucleus ,40,Ca.
Shell modelDoubly magicLevel structure
W. R. Dixon, R. S. Storey, and J. J. Simpson, Lifetimes of 44Ti levels. Nucl. Phys. A 202, 579 (1973). doi: 10.1016/0375-9474(73)90644-1http://doi.org/10.1016/0375-9474(73)90644-1
J. J. Simpson, W. R. Dixon, and R. S. Storey, Evidence for rotational bands in 44Ti. Phys. Rev. Lett. 31, 946 (1973). doi: 10.1103/PhysRevLett.31.946http://doi.org/10.1103/PhysRevLett.31.946
W. R. Dixon, R. S. Storey, and J. J. Simpson, Levels of 44Ti from the 40Ca(α, γ) 44Ti reaction. Phys. Rev. C 15, 1896 (1977). doi: 10.1103/PhysRevC.15.1896http://doi.org/10.1103/PhysRevC.15.1896
J.W. Olness, J. J. Kolata, E.K. Warburton, High-spin states in 44Ti and 44Sc*. Phys. Rev. C 10, 1663 (1974). doi: 10.1103/PhysRevC.10.1663http://doi.org/10.1103/PhysRevC.10.1663
C. Michelagnoli, C.A. Ur, E. Farnea et al., Lifetime measurement in the N = Z nucleus 44Ti*. Acta Phys. Pol. B 42, 825 (2011). doi: 10.5506/APhysPolB.42.825http://doi.org/10.5506/APhysPolB.42.825
K. Arnswald, T. Braunroth, M. Seidlitz et al., Enhanced collectivity along the N = Z line: Lifetime measurements in 44Ti, 48Cr, and 52Fe. Phys. Lett. B 772, 599-606 (2017). doi: 10.1016/j.physletb.2017.07.032http://doi.org/10.1016/j.physletb.2017.07.032
K. Arnswald, P. Reiter, A. Blazhev et al., Lifetime measurements in 44Ti. Phys. Rev. C 102, 054302 (2020). doi: 10.1103/PhysRevC.102.054302http://doi.org/10.1103/PhysRevC.102.054302
L. Zhou, S. M. Wang, D. Q. Fang et al., Recent progress in two-proton radioactivity. Nucl. Sci. Tech. 33, 105 (2022). doi: 10.1007/s41365-022-01091-1http://doi.org/10.1007/s41365-022-01091-1
X. Zhou, M. Wang, Y. H. Zhang et al., Charge resolution in the isochronous mass spectrometry and the mass of 51Co. Nucl. Sci. Tech. 32, 37 (2021). doi: 10.1007/s41365-021-00876-0http://doi.org/10.1007/s41365-021-00876-0
X. B. Wei, H. L. Wei, Y. T. Wang et al., Multiple-models predictions for drip line nuclides in projectile fragmentation of 40,48Ca, 58,64Ni, and 78,86Kr at 140 MeV/u. Nucl. Sci. Tech. 33, 155 (2022). doi: 10.1007/s41365-022-01137-4http://doi.org/10.1007/s41365-022-01137-4
Y. F. Gao, B. S. Cai, C. X. Yuan et al., Investigation of β- decay half-life and delayed neutron emission with uncertainty analysis. Nucl. Sci. Tech. 34, 9 (2023). doi: 10.1007/s41365-022-01153-4http://doi.org/10.1007/s41365-022-01153-4
A. A. Raduta, L. Zamick, E. Moya de Guerra et al., Description of single and double analog states in the f7/2 shell: The Ti isotopes. Phys. Rev. C 68, 044317 (2003). doi: 10.1103/PhysRevC.68.044317http://doi.org/10.1103/PhysRevC.68.044317
A. Juodagalvis, I. Ragnarsson, and S. Aberg, Cranked Nilsson-Strutinsky vs the spherical shell model:A comparative study of pf-shell nuclei. Phys. Rev. C 73, 044327 (2006). doi: 10.1103/PhysRevC.73.044327http://doi.org/10.1103/PhysRevC.73.044327
Y. Utsuno, T. Otsuka, B. Alex Brown et al., Shape transitions in exotic Si and S isotopes and tensor-force-driven Jahn-Teller effect. Phys. Rev. C 86, 051301(R) (2012). doi: 10.1103/PhysRevC.86.051301http://doi.org/10.1103/PhysRevC.86.051301
B. A. Brown, B. H. Wildenthal, Status of the nuclear shell model. Annu. Rev. Nucl. Part. Sci. 38, 29 (1988). doi: 10.1146/annurev.ns.38.120188.000333http://doi.org/10.1146/annurev.ns.38.120188.000333
M. Honma, T. Otsuka, B.A. Brown et al., Shell-model description of neutron-rich pf-shell nuclei with a new effective interaction GXPF1. Eur. Phys. J. A 25, 499 (2005). doi: 10.1140/epjad/i2005-06-032-2http://doi.org/10.1140/epjad/i2005-06-032-2
Y. Utsuno, T. Otsuka, T. Mizusaki et al., Varying shell gap and deformation in N;20 unstable nuclei studied by the Monte Carlo shell model. Phys. Rev. C 60, 054315 (1999). doi: 10.1103/PhysRevC.60.054315http://doi.org/10.1103/PhysRevC.60.054315
A. Poves, A. Zuker, Theoretical spectroscopy and the fp shell. Phys. Rep. 70, 235 (1981). doi: 10.1016/0370-1573(81)90153-8http://doi.org/10.1016/0370-1573(81)90153-8
M. Hasegawa, K. Kaneko, and S. Tazaki, Improvement of the extended P + QQ interaction by modifying the monopole field. Nucl. Phys. A 688, 765 (2001). doi: 10.1016/S0375-9474(00)00602-3http://doi.org/10.1016/S0375-9474(00)00602-3
K. Kaneko, M. Hasegawa, T. Mizusaki, Quadrupole and octupole softness in the N = Z nucleus 64Ge. Phys. Rev. C 66, 051306(R) (2002). doi: 10.1103/PhysRevC.66.051306http://doi.org/10.1103/PhysRevC.66.051306
K. Kaneko, Y. Sun, M. Hasegawa et al., Shell model study of single-particle and collective structure in neutron-rich Cr isotopes. Phys. Rev. C 78, 064312 (2008). doi: 10.1103/PhysRevC.78.064312http://doi.org/10.1103/PhysRevC.78.064312
K. Kaneko, Y. Sun, T. Mizusaki et al., Shell-model study for neutron-rich sd-shell nuclei. Phys. Rev. C 83, 014320 (2011). doi: 10.1103/PhysRevC.83.014320http://doi.org/10.1103/PhysRevC.83.014320
H. K. Wang, S. K. Ghorui, Z. Q. Chen et al., Analysis of low-lying states, neutron-core excitations, and electromagnetic transitions in tellurium isotopes 130-134Te. Phys. Rev. C 102, 054316 (2020). doi: 10.1103/PhysRevC.102.054316http://doi.org/10.1103/PhysRevC.102.054316
H. K. Wang, S. K. Ghorui, K. Kaneko et al., Large-scale shell-model study for excitations across the neutron N = 82 shell gap in 131-133Sb. Phys. Rev. C 96, 054313 (2017). doi: 10.1103/PhysRevC.96.054313http://doi.org/10.1103/PhysRevC.96.054313
H. K. Wang, Y. Sun, H. Jin et al., Structure analysis for hole-nuclei close to 132Sn by a large-scale shell-model calculation. Phys. Rev. C 88, 054310 (2013). doi: 10.1103/PhysRevC.88.054310http://doi.org/10.1103/PhysRevC.88.054310
H. K. Wang, K. Kaneko, and Y. Sun, Isomerism and persistence of the N = 82 shell closure in the neutron-rich 132Sn region. Phys. Rev. C 89, 064311 (2014). doi: 10.1103/PhysRevC.89.064311http://doi.org/10.1103/PhysRevC.89.064311
H. K. Wang, K. Kaneko, Y. Sun et al., Monopole effects, isomeric states, and cross-shell excitations in the A = 129 hole nuclei near 132Sn. Phys. Rev. C 95, 011304 (2017). doi: 10.1103/PhysRevC.103.024317http://doi.org/10.1103/PhysRevC.103.024317
A. J. Majarshin, Y. A. Luo, F. Pan et al., Nuclear structure and band mixing in 194Pt. Phys. Rev. C 103, 024317 (2021). doi: 10.1103/PhysRevC.103.024317http://doi.org/10.1103/PhysRevC.103.024317
A. J. Majarshin, Y. A. Luo, F. Pan et al., Structure of rotational bands in 109Rh. Phys. Rev. C 104, 014321 (2021). doi: 10.1103/PhysRevC.104.014321http://doi.org/10.1103/PhysRevC.104.014321
http://www.nndc.bnl.gov/ensdf/http://www.nndc.bnl.gov/ensdf/.
B. A. Brown, W. D. M. Rae, The Shell-Model Code NuShellX@MSU. Nucl. Data Sheets 120, 115 (2014). doi: 10.1016/j.nds.2014.07.022http://doi.org/10.1016/j.nds.2014.07.022
Y. Z. Ma, L. Coraggio, L. D. Augelis et al., Contribution of chiral three-body forces to the monopole component of the effective shell-model Hamiltonian. Phys. Rev. C 100, 034324 (2019). doi: 10.1103/PhysRevC.100.034324http://doi.org/10.1103/PhysRevC.100.034324
S. R. Stroberg, H. Hergert, S. K. Bogner et al., Nonempirical interactions for the nuclear shell model: An update. Annu. Rev. Nucl. Part. Sci. 69, 307 (2017). doi: 10.1146/annurev-nucl-101917-021120http://doi.org/10.1146/annurev-nucl-101917-021120
A. P. Zuker, Three-body monopole corrections to realistic interactions. Phys. Rev. Lett. 90, 042502 (2003). doi: 10.1103/PhysRevLett.90.042502http://doi.org/10.1103/PhysRevLett.90.042502
H. K. Wang, Z. H. Li, Y. B. Wang et al., High-spin levels, β-decay and monopole effects in A = 128 hole nuclei near 132Sn. Phys. Lett. B. 833, 137337 (2022). doi: 10.1016/j.physletb.2022.137337http://doi.org/10.1016/j.physletb.2022.137337
R. F. Takaharu Otsuka, Toshio Suzuki, H. Grawe et al., Evolution of nuclear shells due to the tensor force. Phys. Rev. Lett. 95, 232502 (2005). doi: 10.1103/PhysRevLett.95.232502http://doi.org/10.1103/PhysRevLett.95.232502
H. K. Wang, Z.Q. Chen, H. Jin et al., Ground state inversions in hole nuclei near 132Sn driven by the monopole interaction. Phys. Rev. C 104, 014301 (2021). doi: 10.1103/PhysRevC.104.014301http://doi.org/10.1103/PhysRevC.104.014301
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution