1.Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
2.Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
3.School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
4.Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516003, China
† h.wang@cicams.ac.cn
‡ yanghaibo@impcas.ac.cn
§ chengxin.zhao@impcas.ac.cn
Scan for full text
Cite this article
Yi-Lun Chen, Hong-Kai Wang, Shi-Yu Zhang, et al. Hi’CT: a pixel sensor-based device for ion tomography. [J]. Nuclear Science and Techniques 34(7):111(2023)
Yi-Lun Chen, Hong-Kai Wang, Shi-Yu Zhang, et al. Hi’CT: a pixel sensor-based device for ion tomography. [J]. Nuclear Science and Techniques 34(7):111(2023) DOI: 10.1007/s41365-023-01251-x.
Carbon ions, commonly referred to as particle therapy, have become increasingly popular in the last decade. Accurately predicting the range of ions in tissues is important for the precise delivery of doses in heavy-ion radiotherapy. Range uncertainty is currently the largest contributor to dose uncertainty in normal tissues, leading to the use of safety margins in treatment planning. One potential method is the direct relative stopping measurement (RSP) with ions. Hi’CT, a compact segmented full digital tomography detector using monolithic active pixel sensors (MAPS), was designed and evaluated using a 430-MeV/u high-energy carbon ion pencil beam in Geant4. The precise position of the individual carbon ion track can be recorded and reconstructed using a 30 × 30 μM small pixel pitch size. Two types of customized image reconstruction algorithms were developed, and their performances were evaluated using three different modules of CATPHAN 600-series phantoms. The RSP measurement accuracy of the tracking algorithm for different types of materials in the CTP404 module was less than 1%. In terms of spatial resolution, the tracking algorithm could achieve a 20% modulation transfer function (MTF) normalization value of CTP528 imaging results at 5 lp/cm, which is significantly better than that of the fast imaging algorithm (3 lp/cm). The density resolution obtained using the tracking algorithm of the customized CTP515 was approximately 10.5%. In conclusion, a compact digital heavy-ion CT (Hi’CT) system was designed, and its nominal performance was evaluated in a simulation. The RSP resolution and image quality provide potential feasibility for scanning most parts of an adult body or pediatric patient, particularly for head and neck tumor treatment.
Heavy-Ion ImagingComputed TomographySilicon Pixel DetectorsMonte CarloPhantomsRadiotherapyImage-guidedTracking
W. C. Röntgen, Uber eine neue Art von Strahlen. Sitzung Physikal-Medicin Gesellschaft 300, 12-17 (1898). doi: 10.1002/andp.18983000103http://doi.org/10.1002/andp.18983000103
R. R. Wilson, Radiological use of fast protons. Radiology 47, 487-491 (1946). doi: 10.1148/47.5.487http://doi.org/10.1148/47.5.487
E. J. Hall, A. J. Giaccia, Physics and chemistry of radiation absorption. Radiobiology for the Radiologist (2006). ISBN-13: 978-0-7817-4151-4
J.M. Slater, J.O. Archambeau, D.W. Miller et al., The proton treatment center at Loma Linda University Medical Center: rationale for and description of its development. Inter. J. Radiat. Oncol. Biol. Phys. 22, 383-389 (1992). doi: 10.1016/0360-3016(92)90058-phttp://doi.org/10.1016/0360-3016(92)90058-p
M. Durante, J.S. Loeffler, Charged particles in radiation oncology. Nature Reviews Clinical Oncology 7, 37-43 (2010). doi: 10.1038/nrclinonc.2009.183http://doi.org/10.1038/nrclinonc.2009.183
J.R. Castro, Results of heavy ion radiotherapy. Radiat. Environ. Biophys. 34, 45-48 (1995). doi: 10.1007/BF01210545http://doi.org/10.1007/BF01210545
W. Tinganelli, M. Durante, Carbon ion radiobiology. Cancers, 12, 3022 (2020). doi: 10.3390/cancers12103022http://doi.org/10.3390/cancers12103022
J. Wang, L. Alberto Cruz, Q. Wu et al., Radiation shielding design of a compact single-room proton therapy based on synchrotron. Nucl. Sci. Tech. 31, 1 (2020). doi: 10.1007/s41365-019-0712-1http://doi.org/10.1007/s41365-019-0712-1
W. Fang, X. Huang, J. Tan et al., Proton linac-based therapy facility for ultra-high dose rate (FLASH) treatment. Nucl. Sci. Tech. 32, 34 (2021). doi: 10.1007/s41365-021-00872-4http://doi.org/10.1007/s41365-021-00872-4
Y. Zhang, W. Fang, X. Huang et al., Design, fabrication, and cold test of an S-band high-gradient accelerating structure for compact proton therapy facility. Nucl. Sci. Tech. 32, 38 (2021). doi: 10.1007/s41365-021-00869-zhttp://doi.org/10.1007/s41365-021-00869-z
Q. Li, Z. Dai, Z. Yan, et al., Heavy-ion conformal irradiation in the shallow-seated tumor therapy terminal at HIRFL. Med. & Biol. Eng. Comput. 45, 1037-1043 (2007). doi: 10.1007/s11517-007-0245-3http://doi.org/10.1007/s11517-007-0245-3
Y. Li, X. Li, J. Yang, et al., Flourish of proton and carbon ion radiotherapy in China. Front. Oncol. 12 (2022). doi: 10.3389/fonc.2022.819905http://doi.org/10.3389/fonc.2022.819905
H. Muraishi, K. Nishimura, S. Abe et al., Evaluation of spatial resolution for heavy ion CT system based on the measurement of residual range distribution with HIMAC. IEEE T. Nucl. Sci. 56, 2714-2721 (2009). doi: 10.1109/TNS.2009.2023520http://doi.org/10.1109/TNS.2009.2023520
M. F. Moyers, Comparison of x ray computed tomography number to proton relative linear stopping power conversion functions using a standard phantom. Med. Phys. 41, 061705 (2014). doi: 10.1118/1.4870956http://doi.org/10.1118/1.4870956
J. Schuemann, S. Dowdell, C. Grassberger, et al., Site-specific range uncertainties caused by dose calculation algorithms for proton therapy. Phys. Med. Biol. 59, 4007 (2014). doi: 10.1088/0031-9155/59/15/4007http://doi.org/10.1088/0031-9155/59/15/4007
D. C. Hansen, N. Bassler, T. S. Sørensen, et al., The image quality of ion computed tomography at clinical imaging dose levels. Medical physics, 41, 111908 (2014). doi: 10.1118/1.4897614http://doi.org/10.1118/1.4897614
D. Lo Presti, S. Aiello, D. L. Bonanno, et al., OFFSET: Optical Fiber Folded Scintillating Extended Tracker. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment, 737, 195-202 (2014). doi: 10.1016/j.nima.2013.11.049http://doi.org/10.1016/j.nima.2013.11.049
F. Sauli, GEM: A new concept for electron amplification in gas detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 386, 531-534 (1997). doi: 10.1016/S0168-9002(96)01172-2http://doi.org/10.1016/S0168-9002(96)01172-2
U. Amaldi, A. Bianchi, Y.-H. Chang, et al., Construction, test and operation of a proton range radiography system. Nuclear Instruments and Methods in Physics Research Section A: Accelerators Spectrometers Detectors and Associated Equipment, 629, 337-344 (2011). doi: 10.1016/j.nima.2010.11.096http://doi.org/10.1016/j.nima.2010.11.096
G. Poludniowski, N. M. Allinson, T. Anaxagoras, et al., Proton-counting radiography for proton therapy: a proof of principle using CMOS APS technology. Phys. Med. Biol. 59, 2569 (2014). doi: 10.1088/0031-9155/59/11/2569http://doi.org/10.1088/0031-9155/59/11/2569
M. Esposito, T. Anaxagoras, P. M. Evans, et al., CMOS Active Pixel Sensors as energy-range detectors for proton Computed Tomography. Journal of Instrumentation, 10, C06001 (2015). doi: 10.1088/1748-0221/10/06/C06001http://doi.org/10.1088/1748-0221/10/06/C06001
T. Price, M. Esposito, G. Poludniowski et al., Expected proton signal sizes in the PRaVDA Range Telescope for proton Computed Tomography. Journal of Instrumentation, 10, P05013 (2015). doi: 10.1088/1748-0221/10/05/P05013http://doi.org/10.1088/1748-0221/10/05/P05013
A.P. de Haas, G. Nooren, T. Peitzmann et al., The FoCal prototype—an extremely fine-grained electromagnetic calorimeter using CMOS pixel sensors. J. Instrument. 13, P01014 (2018). doi: 10.1088/1748-0221/13/01/P01014http://doi.org/10.1088/1748-0221/13/01/P01014
S. Agostinelli, J. Allison, K. Amako, et al., Geant4—a simulation toolkit. Nucl. Instrum. Meth. Phys. Res. A 506, 250-303 (2003). doi: 10.1016/S0168-9002(03)01368-8http://doi.org/10.1016/S0168-9002(03)01368-8
R. Zhang, W.D. Newhauser, Calculation of water equivalent thickness of materials of arbitrary density, elemental composition and thickness in proton beam irradiation. Phys. Medicine & Biology, 54, 1383 (2009). doi: 10.1088/0031-9155/54/6/001http://doi.org/10.1088/0031-9155/54/6/001
C.M. Poole, I. Cornelius, J.V. Trapp et al., A CAD Interface for GEANT4. Austral. Phys. Eng. Sci. Med. 35, 329-334 (2012). doi: 10.1007/s13246-012-0159-8http://doi.org/10.1007/s13246-012-0159-8
C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9, 671-675 (2012). doi: 10.1038/nmeth.2089http://doi.org/10.1038/nmeth.2089
V. Giacometti, V. A. Bashkirov, P. Piersimoni, et al., Software platform for simulation of a prototype proton CT scanner. Med. Phys. 44, 1002-1016 (2017). doi: 10.1002/mp.12107http://doi.org/10.1002/mp.12107
R.P. Johnson, Review of medical radiography and tomography with proton beams. Reports on Progress in Physics 81, 016701 (2017). doi: 10.1088/1361-6633/aa8b1dhttp://doi.org/10.1088/1361-6633/aa8b1d
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution