1.National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
† htlong@ustc.edu.cn
‡ baizhe@ustc.edu.cn
Scan for full text
Cite this article
Peng-Hui Yang, Gang-Wen Liu, Jian-Hao Xu, et al. Design and comparison of hybrid multi-bend achromat lattices for HALF storage ring. [J]. Nuclear Science and Techniques 34(7):107(2023)
Peng-Hui Yang, Gang-Wen Liu, Jian-Hao Xu, et al. Design and comparison of hybrid multi-bend achromat lattices for HALF storage ring. [J]. Nuclear Science and Techniques 34(7):107(2023) DOI: 10.1007/s41365-023-01252-w.
The Hefei Advanced Light Facility (HALF) proposed by the National Synchrotron Radiation Laboratory is a green-field vacuum ultraviolet and soft X-ray diffraction-limited storage ring light source with a beam energy of 2.2 GeV and emittance goal of less than 100 pm,⋅,rad. Inspired by the ESRF-EBS hybrid multi-bend achromat (HMBA), SLS-2, and Diamond-II lattices, we propose and design a modified H6BA lattice as the baseline lattice of the HALF storage ring with 20 identical cells and a natural emittance of approximately 86 pm,⋅,rad. In this study, three other types of HMBA lattices comprising two H7BA lattices and a H6BA lattice are designed for HALF with the same number of cells. The main storage ring properties of these four HMBA lattices are compared. Because the intra-beam scattering (IBS) effect is significant in the HALF storage ring, we calculate and compare the equilibrium emittances of the four lattices with IBS included. These comparisons show that the present modified H6BA lattice, which has a relatively low equilibrium emittance and more straight sections, is preferred for the HALF storage ring after a comprehensive consideration.
Hefei Advanced Light FacilityLattice designHybrid MBA latticeIntra-beam scattering
W. Xu, D. Jia, S.P. Jiang et al., Upgrade project on top-off operation for Hefei light source. Proceedings of the IPAC 2017, Copenhagen, Denmark, 2017, pp. 2719–2722. doi: 10.18429/JACoW-IPAC2017-WEPAB064http://doi.org/10.18429/JACoW-IPAC2017-WEPAB064
L. Wang, W.M. Li, G.Y. Feng et al., The upgrade project of Hefei light source (HLS). Proceedings of the IPAC 2010, Kyoto, Japan, 2010, pp. 2588-2590.
J.Y. Li, G. Huang, W. Wei et al., Operational status of HLS-II. Proceedings of the IPAC 2016, Busan, Korea, 2016, pp. 4155–4158. doi: 10.18429/JACoW-IPAC2016-THPOY028http://doi.org/10.18429/JACoW-IPAC2016-THPOY028
C.F. Wu, L. Wang, C. Li et al., The 4th harmonic cavity for Heifei Light Source-II. Proceedings of the IPAC 2016, Busan, Korea, 2016, pp. 837–839. doi: 10.18429/JACoW-IPAC2016-MOPOW054http://doi.org/10.18429/JACoW-IPAC2016-MOPOW054
Z. Ren, B. Wei, H. Xu et al., Modified double-double bend achromat lattice for an ultra-low emittance design of the HLS. J. Instrum. 2022, 17, P07001 (2022). doi: 10.1088/1748-0221/17/07/p07001http://doi.org/10.1088/1748-0221/17/07/p07001
R. Hettel, DLSR design and plans: an international overview. J. Synchrotron Rad. 21, 843-855 (2014). doi: 10.1107/S1600577514011503http://doi.org/10.1107/S1600577514011503
P.F. Tavares, S.C. Leemann, M. Sjostrom et al., The MAX IV storage ring project. J. Synchrotron Rad. 21, 862-877 (2014). doi: 10.1107/S1600577514011515http://doi.org/10.1107/S1600577514011515
P. Raimondi, N. Carmignani, L.R. Carver et al., Commissioning of the hybrid multibend achromat lattice at the European Synchrotron Radiation Facility. Phys. Rev. Accel. Beams 24, 110701 (2021). doi: 10.1103/PhysRevAccelBeams.24.110701http://doi.org/10.1103/PhysRevAccelBeams.24.110701
L. Liu, N. Milas, A.H.C. Mukai et al., The sirius project. J. Synchrotron Rad. 21, 904-911 (2014). doi: 10.1107/S1600577514011928http://doi.org/10.1107/S1600577514011928
M. Borland, T.G. Berenc, R.R. Lindberg et al., Lower emittance lattice for the advanced photon source upgrade using reverse bending magnets. Proceedings of the NAPAC 2016, Chicago, IL, USA, 2016, pp. 877–880. doi: 10.18429/JACoW-NAPAC2016-WEPOB01http://doi.org/10.18429/JACoW-NAPAC2016-WEPOB01
Y. Jiao, G. Xu, X. Cui et al., The HEPS project. J. Synchrotron Rad. 25, 1611-1618 (2018). doi: 10.1107/S1600577518012110http://doi.org/10.1107/S1600577518012110
A. Streun, T. Garvey, L. Rivkin et al., SLS-2–the upgrade of the Swiss Light Source. J. Synchrotron Rad. 25, 631-641 (2018). doi: 10.1107/S1600577518002722http://doi.org/10.1107/S1600577518002722
C. Steier, A.P. Allézy, A. Anders et al., Status of the conceptual design of ALS-U. Proceedings of the IPAC 2018, Vancouver, BC, Canada, 2018, pp. 4134–4137. doi: 10.18429/JACoW-IPAC2018-THPMF036http://doi.org/10.18429/JACoW-IPAC2018-THPMF036
E. Karantzoulis, W. Barletta, Aspects of the Elettra 2.0 design. Nucl. Instrum. Methods Phys. Res. A 927, 70-80 (2019). doi: 10.1016/j.nima.2019.01.044http://doi.org/10.1016/j.nima.2019.01.044
Z.H. Bai, G.Y. Feng, T.L. He et al., A modified hybrid 6BA lattice for the HALF storage ring. Proceedings of the IPAC 2021, Campinas, SP, Brazil, 2021, pp. 407–409. doi: 10.18429/JACoW-IPAC2021-MOPAB112http://doi.org/10.18429/JACoW-IPAC2021-MOPAB112
D. Einfeld, J. Schaper, M. Plesko, Design of a diffraction limited light source (DIFL). Proceedings of the PAC, Dalls, USA, TPG08, 177-179 (1995). doi: 10.1109/PAC.1995.504602http://doi.org/10.1109/PAC.1995.504602
J.C. Biasci, J.F. Bouteille, N. Carmignani et al., A low-emittance lattice for the ESRF. Synchrotron Radiation News 27(6), 8-12 (2014). doi: 10.1080/08940886.2014.970931http://doi.org/10.1080/08940886.2014.970931
C.G. Schroer, I. Agapov, W. Brefeld et al., PETRA IV: the ultralow-emittance source project at DESY. J. Synchrotron Rad. 25, 1277-1290 (2018). doi: 10.1107/S1600577518008858http://doi.org/10.1107/S1600577518008858
C. Sun, H. Nishimura, D. Robin et al., Optimization of the ALS-U storage ring lattice. Proceedings of the IPAC 2016, Busan, Korea, 2016, pp. 2959–2961. doi: 10.18429/JACoW-IPAC2016-WEPOW050http://doi.org/10.18429/JACoW-IPAC2016-WEPOW050
A. Alekou, P. Raimondi, R. Bartolini et al., Study of double triple bend achromat (DTBA) lattice for a 3GeV light source. Proceedings of the IPAC 2016, Busan, Korea, 2016, pp. 2940–2942. doi: 10.18429/JACoW-IPAC2016-WEPOW044http://doi.org/10.18429/JACoW-IPAC2016-WEPOW044
X.Z. Liu, S.Q. Tian, X. Xu et al., Intra-beam scattering and beam lifetime in a candidate lattice of the soft X-ray diffraction-limited storage ring for the upgraded SSRF. Nucl. Sci. Tech. 32, 83 (2021). doi: 10.1007/s41365-021-00913-yhttp://doi.org/10.1007/s41365-021-00913-y
Y. Zhao, Y. Jiao, S. Wang, Design study of APS-U-type hybrid-MBA lattice for mid-energy DLSR. Nucl. Sci. Tech. 32, 71 (2021). doi: 10.1007/s41365-021-00902-1http://doi.org/10.1007/s41365-021-00902-1
P. Yang, Z. Bai, T. Zhang et al., Design of a hybrid ten-bendachromat lattice for a diffraction-limited storage ring light source. Nucl. Instrum. Methods Phys. Res. A 943, 162506 (2019). doi: 10.1016/j.nima.2019.162506http://doi.org/10.1016/j.nima.2019.162506
A. Loulergue, P. Alexandre, P. Brunelle et al., Baseline lattice for the upgrade of SOLEIL. Proceedings of the IPAC 2018, Vancouver, BC, Canada, 2018, pp. 4726–4729. doi: 10.18429/JACoW-IPAC2018-THPML034http://doi.org/10.18429/JACoW-IPAC2018-THPML034
J. Xu, Z. Ren, P. Yang et al., A seven-bend-achromat lattice option for the HALF storage ring. J. Instrum. 17(01), P01001 (2022). doi: 10.1088/1748-0221/17/01/p01001http://doi.org/10.1088/1748-0221/17/01/p01001
K. Deb, A. Pratap, S. Agarwal et al., A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE T. Evolutionary Computation 6(2), 182-197 (2002). doi: 10.1109/4235.996017http://doi.org/10.1109/4235.996017
P. Yang, Z. Bai, J. Xu et al., Comparison of optimization methods for hybrid seven-bend-achromat lattice design. J. Phys. Conference Series 1350(1), 012031 (2019). doi: 10.1088/1742-6596/1350/1/012031http://doi.org/10.1088/1742-6596/1350/1/012031
K.L. Brown, A second-order magnetic optical achromat. IEEE T. Nucl. Sci. 26(3), 3490-3492 (1979). doi: 10.1109/TNS.1979.4330076http://doi.org/10.1109/TNS.1979.4330076
A. Streun, OPA version 3.39 PSI, (2014).
S.C. Leemann, A. Streun, Perspectives for future light source lattices incorporating yet uncommon magnets. Phys. Rev. Accel. Beams, 14, 030701 (2011). doi: 10.1103/PhysRevSTAB.14.030701http://doi.org/10.1103/PhysRevSTAB.14.030701
Z. Bai, Lattice design progress of the HALF storage ring. 3rd workshop on low emittance lattice design, Barcelona, Spain, 2022. https://indico.cells.es/event/1072/contributions/1857/https://indico.cells.es/event/1072/contributions/1857/
A. Piwinski, The Touschek effect in strong focusing storage rings. Cern Library Record (1999). https://arxiv.org/pdf/physics/9903034.pdfhttps://arxiv.org/pdf/physics/9903034.pdf
T. He, Z. Bai, W. Li et al., Bunch lengthening of the HALF storage ring in the presence of passive harmonic cavities. Proceedings of the IPAC 2021, Campinas, SP, Brazil, 2021, pp. 2082–2085. doi: 10.18429/JACoW-IPAC2021-TUPAB265http://doi.org/10.18429/JACoW-IPAC2021-TUPAB265
A. Piwinski, Intra-beam-scattering (1974).
C.C. Du, J.Q. Wang, D.H. Ji et al., Studies of round beam at HEPS storage ring by driving linear difference coupling resonance. Nucl. Instrum. Methods Phys. Res. A 976, 164264 (2020). doi: 10.1016/j.nima.2020.164264http://doi.org/10.1016/j.nima.2020.164264
W. Guo, S. Kramer, S. Krinsky et al., NSLS-II lattice optimization with damping wigglers. Proceedings of the PAC 2009, Vancouver, BC, Canada, 2009, pp. 1102–1104. https://accelconf.web.cern.ch/PAC2009/papers/tu5rfp008.pdfhttps://accelconf.web.cern.ch/PAC2009/papers/tu5rfp008.pdf
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution