1.Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 10049, China
2.Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
3.University of Chinese Academy of Sciences, Beijing 100049, China
4.Beijing HE-Racing Technology Co., Ltd, Beijing 1000049, China
* yangmei@ihep.ac.cn
Scan for full text
Mei Yang, Fu-San Chen, Ya-Feng Wu, et al. Development of short prototype of dual aperture quadrupole magnet for CEPC ring. [J]. Nuclear Science and Techniques 34(7):103(2023)
Mei Yang, Fu-San Chen, Ya-Feng Wu, et al. Development of short prototype of dual aperture quadrupole magnet for CEPC ring. [J]. Nuclear Science and Techniques 34(7):103(2023) DOI: 10.1007/s41365-023-01255-7.
Main quadrupole magnets are critical for the Circular Electron and Positron Collider (CEPC), and are specifically designed as dual aperture quadrupole (DAQ) magnets. However, the field crosstalk between the two apertures presents challenges. As the CEPC will work at four beam energies of Z, W, Higgs and ttbar mode, the DAQ magnets will operate at four field gradients spanning from 3.18 to 12.63 T/m. The first short quadrupole magnet prototype with the bore diameter of 76 mm and magnetic length of 1.0 m revealed the problems of large magnetic field harmonics and a magnetic center shift within the beam energy range. Accordingly, a compensation method was proposed in this work to solve the field crosstalk effect. By adjusting the gap height at the middle of the two apertures, the field harmonics and magnetic center shift are significantly reduced. After optimization, the short prototype was modified using a new scheme. The field simulations are validated from the magnetic measurement results. Further, the multipole field meets the requirements at the four beam energies. The detailed magnetic field optimization, field harmonics adjustment, and measurement results are presented herein.
Dual aperture magnetsField measurementsCrosstalk effectQuadrupole magnetField harmonicsCEPC
The CEPC Study Group, CEPC Conceptual Design Report Volume I-Accelerator, IHEP-CEPC-DR-2018-01, IHEP-AC-2018-01. doi: 10.48550/arXiv.1809.00285http://doi.org/10.48550/arXiv.1809.00285
J. Gao, S. Jin, Review of electron-positron colliders at the high-energy frontier (in Chinese). Chin. Sci. Bull, 60, 1251-1260 (2015). doi: 10.1360/N972014-00820http://doi.org/10.1360/N972014-00820
J. Gao, Y.H. Li, J.Y. Zhai, et al., Key technologies of high energy particle accelerator. Shanghai Jiaotong University Press, Shanghai, China, 2021
Y.W. Wang, X.H. Cui, J. Gao, A beam optics design of the interaction region for the CEPC single-ring scheme. Int. J. Mod. Phys. A 34(10), 1940007 (2019) doi: 10.1142/S0217751X19400074http://doi.org/10.1142/S0217751X19400074
European Organization for Nuclear Research. LEP design report: Vol II the LEP main ring. CERN-LEP/84-01, June 1984
BEPCII Group, Design report of BEPCII, 2002
C. Zhang, BEPCII: Construction and commissioning. Chinese Phys. C 33, 60 (2009). doi: 10.1088/1674-1137/33/S2/016http://doi.org/10.1088/1674-1137/33/S2/016
The FCC Collaboration, FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2. European Physical Journal Special Topics, 228(2), 261-623 (2019). doi: 10.1140/epjst/e2019-900045-4http://doi.org/10.1140/epjst/e2019-900045-4
A. Milanese, Efficient twin aperture magnets for the future circular e+/e- collider. Phys. Rev. Accel. Beams 19(11), 112401(2016). doi: 10.1103/PhysRevAccelBeams.19.112401http://doi.org/10.1103/PhysRevAccelBeams.19.112401
I. Agapov, M. Benedikt, A. Blondel, et al., Future circular lepton collider FCC-ee: Overview and status (2016). arXiv: 2203.07804 [physics.acc-ph]
J.Y. Zhai, D.J. Gong, H.J. Zheng et al., Design of CEPC superconducting RF system. Int. J. Mod. Phys. A 34(10), 1940006 (2019). doi: 10.1142/S0217751X19400062http://doi.org/10.1142/S0217751X19400062
H.J. Zheng, J. Gao, J.Y. Zhai, et al., RF design of 650-MHz 2-cell cavity for CEPC. Nucl. Sci. Tech. 30, 155 (2019). doi: 10.1007/s41365-019-0671-6http://doi.org/10.1007/s41365-019-0671-6
Y.W. Wang, F. Su, S. Bai, et al., Lattice design for the CEPC double ring scheme. Int. J. Mod. Phys. A 33(2), 184001 (2018). doi: 10.1142/S0217751X18400018http://doi.org/10.1142/S0217751X18400018
Y.W. Wang, S. Bai, C.H. Yu, et al., The energy sawtooth effects in the partial double ring scheme of CEPC. Int. J. Mod. Phys. A 34, 1940008 (2019). doi: 10.1142/S0217751X19400086http://doi.org/10.1142/S0217751X19400086
Z.S. Yin, Y.Z. Wu, J.F. Zhang, et al., Design and field measurement of the BEPCII interaction region dual-aperture quadrupoles. Nucl. Instrum. Meth. A 573(3), 323-328 (2007) doi: 10.1016/j.nima.2006.12.029http://doi.org/10.1016/j.nima.2006.12.029
Y.Z. Wu, C.H. Yu, F.S. Chen, et al., The magnet system of the BEPCII interaction region. IEEE T. Appl. Supercon. 20(3), 360-363 (2010). doi: 0.1109/TASC.2010.2040027http://doi.org/0.1109/TASC.2010.2040027
M. Yang, F.S. Chen, X.J. Sun, et al., Development of the CEPC Collider Prototype Magnets. Int. J. Mod. Phys. A 36(22), 2142009 (2021). doi: 10.1142/S0217751X21420094http://doi.org/10.1142/S0217751X21420094
Opera simulation software, 2020, [Online]. Available: https://www.3ds.com/products-services/simulia/products/opera/https://www.3ds.com/products-services/simulia/products/opera/. (Accessed on March 2020)
A. Milanese, J. Bauche, and C. Petrone, Magnetic measurements of the first short models of twin aperture magnets for FCC-ee. IEEE T. Appl. Supercon. 30(4), 1-5 (2020). doi: 10.1109/TASC.2020.2976949http://doi.org/10.1109/TASC.2020.2976949
G. Le Bec, J. Chavanne, C. Benabderrahmane, et al., High gradient quadrupoles for low emittance storage rings. Phys. Rev. Accel. Beams 19(5), 052401 (2016). doi: 10.1103/PhysRevAccelBeams.19.052401http://doi.org/10.1103/PhysRevAccelBeams.19.052401
M. Johansson, B. Anderberg, L.J. Lindgren. Magnet design for a low-emittance storage ring. J. Synchrotron Radiat. 21(5), 884-903 (2014). doi: 10.1103/PhysRevAccelBeams.19.052401http://doi.org/10.1103/PhysRevAccelBeams.19.052401
T. Zickler, Basic design and engineering of normal-conducting, iron-dominated electromagnets. CERN Accelerator School CAS 2009: Specialized Course on Magnets, Bruges, 16-25 June 2009, doi: 10.5170/CERN-2010-004.65http://doi.org/10.5170/CERN-2010-004.65
Y.S. Zhu, M. Yang, F.S. Chen, et al., Development of a high precision small aperture quadrupole magnet with copper plate coils. Nucl. Instrum. Meth. A 1013, 165652 (2021). doi: 10.1016/j.nima.2021.165652http://doi.org/10.1016/j.nima.2021.165652
J.J. Zhao, Z.S. Yin, Particle Accelerator Technology. Higher Education Press, Beijing, China, 2006
M. Yang, F.S. Chen, B.G. Yin, et al., A rotating coil measurement system based on CMM for high-gradient small-aperture quadrupole in HEPS-TF. Radiat. Detect. Tech. and Methods, 5 (1), 8-14 (2021). doi: 10.1007/s41605-020-00211-yhttp://doi.org/10.1007/s41605-020-00211-y
J.T. Tanabe, Iron Dominated Electromagnets: Design, Fabrication, Assembly and Measurements. Singapore, World Scientific Publishing Company, 2005. doi: 10.48550/arXiv.1103.1119http://doi.org/10.48550/arXiv.1103.1119
A.K. Jain, Harmonic Coils. CAS-Measurement and alignment of accelerator and detector magnets, Anacapri, Italy,1997, CERN 98-05, P. 175
J.X. Zhou, L. Li, B.G. Yin, et al, A harmonic coil measurement system based on a dynamic signal acquisition device. Nucl. Instrum. Meth. A 624, 549-553 (2010). doi: 10.1016/j.nima.2010.10.009http://doi.org/10.1016/j.nima.2010.10.009
A.K. Jain, Measurements of field quality using harmonic coils. US Particle Accelerator School on Superconducting Accelerator Magnets, January 22–26, 2001, Houston, Texas, USA.
Q.L. Peng, F.L. Ren, B.G. Yin, et al., Rotating coil field measurement of superconducting magnet for BEPCII interaction region. Nucl. Instrum. Meth. A, 640(1), 13-18 (2011) doi: 10.1016/j.nima.2011.03.015http://doi.org/10.1016/j.nima.2011.03.015
Y.S. Zhu, F.S. Chen, L. Wu, China Patent, ZL 201710613136.3, Sept 2019
0
Views
6
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution