1.Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou 310024, China.
2.Shanghai Synchrotron Radiation Faciality, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
3.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
* xiel@sari.ac.cn;
songfei@sinap.ac.cn
Scan for full text
Cite this article
Huan Zhang, Lei Xie, Zhao-Feng Liang, et al. Tandem catalysis for enhanced CO oxidation over the Bi-Au-SiO2 interface. [J]. Nuclear Science and Techniques 34(7):108(2023)
Huan Zhang, Lei Xie, Zhao-Feng Liang, et al. Tandem catalysis for enhanced CO oxidation over the Bi-Au-SiO2 interface. [J]. Nuclear Science and Techniques 34(7):108(2023) DOI: 10.1007/s41365-023-01256-6.
Bimetallic catalysts typically exploit unique synergetic effects between two metal species to achieve their catalytic effect. Understanding the mechanism of CO oxidation using hybrid heterogeneous catalysts is important for effective catalyst design and environmental protection. Herein, we report a Bi-Au/SiO,2, tandem bimetallic catalyst for the oxidation of CO over the Au/SiO,2, surface, which was monitored using near-ambient-pressure X-ray photoelectron spectroscopy. The Au-decorated SiO,2, catalyst exhibited scarce activity in the CO oxidation reaction; however, the introduction of Bi to the Au/SiO,2, system promoted the catalytic activity. The mechanism is thought to involve the dissociation O,2, molecules in the presence of Bi, which results in spillover of the O species to adjacent Au atoms, thereby forming Au,δ+,. Further CO adsorption, followed by thermal treatment, facilitated the oxidation of CO at the Au-Bi interface, resulting in a reversible reversion to the neutral Au valence state. Our work provides insight into the mechanism of CO oxidation on tandem surfaces and will facilitate the rational design of other Au-based catalysts.
APXPSCO oxidationAu-Bi interfaceTandem catalysisIn-situ
C. Wu, C. Liu, D. Su et al., Bimetallic synergy in cobalt–palladium nanocatalysts for CO oxidation. Nat. Catal. 2, 78-85 (2019). doi: 10.1038/s41929-018-0190-6http://doi.org/10.1038/s41929-018-0190-6
D. Kim, J. Resasco, Y. Yu et al., Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nat. Commun. 5, 4948 (2014). doi: 10.1038/ncomms5948http://doi.org/10.1038/ncomms5948 (2014)
J.L. Snider, V. Streibel, M.A. Hubert et al., Revealing the synergy between oxide and alloy phases on the performance of bimetallic In-Pd catalysts for CO2 hydrogenation to methanol. ACS Catal. 9, 3399-3412 (2019). doi: 10.1021/acscatal.8b04848http://doi.org/10.1021/acscatal.8b04848
M. Khanuja, B.R. Mehta, S.M. Shivaprasad, Geometric and electronic changes during interface alloy formation in Cu/Pd bimetal layers. Thin Solid Films 516, 5435-5439 (2008). doi: 10.1016/j.tsf.2007.07.117http://doi.org/10.1016/j.tsf.2007.07.117
J.A. Rodriguez, D.W. Goodman, The Nature of the Metal-Metal Bond in Bimetallic Surfaces. Science 257, 897-903 (1992). doi: 10.1126/science.257.5072.897http://doi.org/10.1126/science.257.5072.897
H.S. Yu, X.J. Wei, J. Li et al., The XAFS beamline of SSRF. Nucl. Sci. Tech. 26(06), 6-12 (2015). doi: 10.13538/j.1001-8042/nst.26.050102http://doi.org/10.13538/j.1001-8042/nst.26.050102
A.V. Bukhtiyarov, I.P. Prosvirin, A.A. Saraev et al., In situ formation of the active sites in Pd–Au bimetallic nanocatalysts for CO oxidation: NAP (near ambient pressure) XPS and MS study. Faraday Discuss. 208, 255 (2018). doi: 10.1039/c7fd00219jhttp://doi.org/10.1039/c7fd00219j
M.A. Languille, E. Ehret, H.C. Lee et al., In-situ surface analysis of AuPd(110) under elevated pressure of CO. Catal. Today, 260, 39-45 (2016). doi: 10.1016/j.cattod.2015.05.029http://doi.org/10.1016/j.cattod.2015.05.029
L. Delannoy, S. Giorgio, J. G. Mattei et al., Surface Segregation of Pd from TiO2-Supported AuPd Nanoalloys under CO Oxidation Conditions Observed In situ by ETEM and DRIFTS. ChemCatChem 5, 2707-2716 (2013).doi: 10.1002/cctc.201200618http://doi.org/10.1002/cctc.201200618
P.S. West, R.L. Johnston, G. Barcaro et al., The effect of CO and H chemisorption on the chemical ordering of bimetallic clusters. J. Phys. Chem. C 114, 19678-19686 (2010). doi: 10.1021/jp108387xhttp://doi.org/10.1021/jp108387x
M. Valden, S. Pak, X. Lai, D.W. Goodman, Structure sensitivity of CO oxidation over model Au/TiO2 catalysts. Catal, Lett. 56, 7-10 (1998). doi: 10.1023/A:1019028205985http://doi.org/10.1023/A:1019028205985
F. Yang, M.S. Chen, D.W. Goodman, Sintering of Au Particles Supported on TiO2(110) during CO Oxidation. J. Phys. Chem. C 113, 254-260 (2009). doi: 10.1021/jp807865whttp://doi.org/10.1021/jp807865w
W. He, X. Han, H. Jia et al., AuPt alloy nanostructures with tunable composition and enzyme-like activities for colorimetric detection of bisulfide. Sci. Rep. 7, 40103 (2017). doi: 10.1038/srep40103http://doi.org/10.1038/srep40103 (2017)
B. Zhu, G. Thrimurthulu, L. Delannoy et al., Evidence of Pd segregation and stabilization at edges of AuPd nano-clusters in the presence of CO: a combined DFT and DRIFTS study. J. Catal. 308, 272-281 (2013). doi: 10.1016/j.jcat.2013.08.022http://doi.org/10.1016/j.jcat.2013.08.022
W. Zhan, J. Wang, H. Wang et al., Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation. J. Am. Chem. Soc. 139, 8846-8854 (2017). doi: 10.1021/jacs.7b01784http://doi.org/10.1021/jacs.7b01784
X. Wei, C. Xiao, K. Wang, Y. Tu, A nano-TiO2 supported AuAg alloy nanocluster functionalized electrode for sensitizing the electrochemiluminescent analysis. J. Electroanal. Chem. 702, 37-44 (2013). doi: 10.1016/j.jelechem.2013.05.009http://doi.org/10.1016/j.jelechem.2013.05.009
YH. Lv, Y.H. Zhang, J. Zhang, B. Li, Mössbauer spectroscopy studies on the particle size distribution effect of Fe–B–P amorphous alloy on the microwave absorption properties. Nucl. Sci. Tech. 31, 24 (2020). doi: 10.1007/s41365-020-0734-8http://doi.org/10.1007/s41365-020-0734-8
G. Darabdhara, M. R. Das, M. A. Amin et al., Au-Ni alloy nanoparticles supported on reduced graphene oxide as highly efficient electrocatalysts for hydrogen evolution and oxygen reduction reactions. Int. J. Hydrog. 43, 1424-1438 (2018). doi: 10.1016/j.ijhydene.2017.11.048http://doi.org/10.1016/j.ijhydene.2017.11.048
Q. Ye, J.A. Wang, J.S. Zhao et al., Pt or Pd-doped Au/SnO2 Catalysts: High Activity for Low-temperature CO oxidation. Catal. Lett. 138, 56-61 (2010). doi: 10.1007/s10562-010-0360-xhttp://doi.org/10.1007/s10562-010-0360-x
T. Ward, L. Delannoy, R. Hahn et al., Effects of Pd on Catalysis by Au: CO Adsorption, CO Oxidation, and Cyclohexene Hydrogenation by Supported Au and Pd−Au Catalysts. ACS Catal. 3, 2644-2653 (2013). doi: 10.1021/cs400569vhttp://doi.org/10.1021/cs400569v
F. Gao, Y.L. Wang, D.W. Goodman, CO oxidation over AuPd(100) from ultrahigh vacuum to near-atmospheric pressures: The critical role of contiguous Pd atoms. J. Am. Chem. Soc. 131, 5734-5735 (2009). doi: 10.1021/ja9008437http://doi.org/10.1021/ja9008437
F. Gao, Y.L. Wang, D.W. Goodman,CO oxidation over AuPd(100) from ultrahigh vacuum to near-atmospheric pressures: CO adsorption-induced surface segregation and reaction kinetics. J. Phys. Chem. C 113, 14993-15000 (2009). doi: 10.1021/ja9008437http://doi.org/10.1021/ja9008437
T. Mallat, Z. Bodnar, C. Bronnimann, A. Baiker, Platinum-catalyzed oxidation of alcohols in aqueous solutions. The Role of Bi-Promotion in Suppression of Catalyst Deactivation. Stud. Surf. Sci. Catal. 88, 385-392 (1994). doi: 10.1016/S0167-2991(08)62764-0http://doi.org/10.1016/S0167-2991(08)62764-0
Y. Miao, Z. Yang, X. Liu et al., Self-assembly of BiIII ultrathin layer on Pt surface for non-enzymatic glucose sensing. Electrochim. Acta 111, 621-626 (2013). doi: 10.1016/j.electacta.2013.07.188http://doi.org/10.1016/j.electacta.2013.07.188
X. Ning, L. Zhan, H. Wang et al., Deactivation and regeneration of in situ formed bismuth-promoted platinum catalyst for the selective oxidation of glycerol to dihydroxyacetone. New J. Chem. 42, 18837 (2018). doi: 10.1039/c8nj04513ehttp://doi.org/10.1039/c8nj04513e
M. Wenkin, P. Ruiz, B. Delmon et al., The role of bismuth as promoter in Pd−Bi catalysts for the selective oxidation of glucose to gluconate. J. Mol. Catal. A Chem. 180, 141-159 (2002). doi: 10.1016/S1381-1169(01)00421-6http://doi.org/10.1016/S1381-1169(01)00421-6
L. Peng, Y. Wang, Y. Wang et al., Separated growth of Bi-Cu bimetallic electrocatalysts on defective copper foam for highly converting CO2 to formate with alkaline anion-exchange membrane beyond KHCO3 electrolyte. Appl. Catal. B: Environ. 288, 20003 (2021). doi: 10.1016/j.apcatb.2021.120003http://doi.org/10.1016/j.apcatb.2021.120003
L. Li, F. Cai, F. Qi, D.K. Ma, Cu nanowire bridged Bi nanosheet arrays for efficient electrochemical CO2 reduction toward formate. J. Alloys Compd. 841, 155789 (2020). doi: 10.1016/j.jallcom.2020.155789http://doi.org/10.1016/j.jallcom.2020.155789
L. Jia, H. Yang, J. Deng et al., Copper-bismuth bimetallic microspheres for selective electrocatalytic reduction of CO2 to formate. Chin. J. Chem. 37, 497-500 (2019). doi: 10.1002/cjoc.201900010http://doi.org/10.1002/cjoc.201900010
T. Mallat, A. Baiker, Oxidation of alcohols with molecular oxygen on platinum metal catalysts in aqueous solutions. Catal. Today 19, 247-83 (1994). doi: 10.1016/0920-5861(94)80187-8http://doi.org/10.1016/0920-5861(94)80187-8
Y. Xiao, J. Greeley, A. Varma et al., An experimental and theoretical study of glycerol oxidation to 1,3-Dihydroxyacetone over bimetallic Pt-Bi catalysts. AIChE J. 63, 705-715 (2017). doi: 10.1002/aic.15418http://doi.org/10.1002/aic.15418
K. Roy, L. Artiglia, Y. Xiao et al., Role of bismuth in the stability of Pt−Bi bimetallic catalyst for methane mediated deoxygenation of guaiacol, an APXPS study. ACS Catal. 9, 3694-3699 (2019). doi: 10.1021/acscatal.8b04699http://doi.org/10.1021/acscatal.8b04699
H. Guo, H. Yin, X. Yan et al., Pt-Bi decorated nanoporous gold for high performance direct glucose fuel cell. Sci. Rep. 6, 39162 (2016). doi: 10.1038/srep39162http://doi.org/10.1038/srep39162
D. Basu, S. Basu, Synthesis , characterization and application of platinum based bi-metallic catalysts for direct glucose alkaline fuel cell. Electrochim. Electrochim. Acta 56, 6106-6113 (2011). doi: 10.1016/j.electacta.2011.04.072http://doi.org/10.1016/j.electacta.2011.04.072
H. Zhang, Z. Liang, C. Huang et al., Enhanced dissociation activation of CO2 on the Bi/Cu(111) interface by the synergistic effect. J. Catal. 410, 1-9 (2022). doi: 10.1016/j.jcat.2022.04.001http://doi.org/10.1016/j.jcat.2022.04.001
B. Nan, Q. Fu, J. Yu et al., Unique structure of active platinum-bismuth site for oxidation of carbon monoxide. Nat. Commun. 12, 3342 (2021). doi: 10.1038/s41467-021-23696-7http://doi.org/10.1038/s41467-021-23696-7
K. Zhou, W. Wang, Z. Zhao et al., Synergistic gold−bismuth catalysis for non-mercury hydrochlorination of acetylene to vinyl chloride monomer. ACS Catal. 4, 3112-3116 (2014). doi: 10.1021/cs500530fhttp://doi.org/10.1021/cs500530f
H. Zhang, L. Xie, C.Q. Huang et al., Exploring the CO2 reduction reaction mechanism on Pt/TiO2 with the ambient-pressure X-ray photoelectron spectroscopy. Appl. Surf. Sci. 568, 150933 (2021). doi: 10.1016/j.apsusc.2021.150933http://doi.org/10.1016/j.apsusc.2021.150933
M.D. Strømsheim, J. Knudsen, M.H. Farstad et al., Near ambient pressure XPS investigation of CO oxidation over Pd3Au(100). J. Phys. Chem. C 122, 21484-21492 (2018). doi: 10.1007/s11244-017-0831-zhttp://doi.org/10.1007/s11244-017-0831-z
G. Mills, M.S. Gordon, H. Meitu, Oxygen adsorption on Au clusters and a rough Au(111) surface: The role of surface flatness, electron confinement, excess electrons, and band gap. J. Chem. Phys. 118, 4198-4205 (2003). doi: 10.1063/1.1542879http://doi.org/10.1063/1.1542879
A.Y. Klyushin, T.C.R. Rocha, M. Hävecker et al., A near ambient pressure XPS study of Au oxidation. Phys. Chem. Chem. Phys. 16, 7881 (2014). doi: 10.1039/c4cp00308jhttp://doi.org/10.1039/c4cp00308j
J.P. Simonovis, A. Hunt, R.M. Palomino et al., Enhanced stability of Pt-Cu single-atom alloy catalysts: in situ characterization of the Pt/Cu(111) surface in an ambient pressure of CO. J. Am. Chem. Soc. 125, 10437 (2003). doi: 10.1021/acs.jpcc.8b00078http://doi.org/10.1021/acs.jpcc.8b00078
D. Stolcic, M. Fischer, G. Ganteför et al., Direct Observation of Key Reaction Intermediates on Gold Clusters. J. Am. Chem. Soc. 125, 2848 (2003). doi: 10.1021/ja0293406http://doi.org/10.1021/ja0293406
H. Tang, Y. Su, B. Zhang et al., Classical strong metal-support interactions between gold nanoparticles and titanium dioxide. Sci. Adv. 3, 1700231 (2017). doi: 10.1126/sciadv.1700231http://doi.org/10.1126/sciadv.1700231
B. Afsin, M.W. Roberts, Formation of an Oxy-Chloride Overlayer at a Bi(0001) Surface. Spectrosc. Lett. 27, 139-146 (1994). doi: 10.1080/00387019408002513http://doi.org/10.1080/00387019408002513
S. Röhe, K. Frank, A. Schaefer et al., CO oxidation on nanoporous gold: A combined TPD and XPS study of active catalysts. Surf. Sci. 609, 106-112 (2013). doi: 10.1016/j.susc.2012.11.011http://doi.org/10.1016/j.susc.2012.11.011
M.D. Strømsheim, J. Knudsen, M.H. Farstad et al., Near ambient pressure XPS investigation of CO oxidation over Pd3Au(100). Top Catal 60, 1439-1448 (2017). doi: 10.1007/s11244-017-0831-zhttp://doi.org/10.1007/s11244-017-0831-z
J.P. Simonovis, A. Hunt, R.M. Palomino et al., Enhanced stability of Pt-Cu single-atom alloy catalysts: In situ characterization of the Pt/Cu(111) surface in an ambient pressure of CO. J. Phys. Chem. C 122, 4488-4495 (2018). doi: 10.1021/acs.jpcc.8b00078http://doi.org/10.1021/acs.jpcc.8b00078
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution