Hai-Xia Wang, Xue-Wei Fu, Wei-Ping Liu, et al. Numerical simulation of tritium behavior under a postulated accident condition for CFETR TEP system. [J]. Nuclear Science and Techniques 34(7):109(2023)
DOI:
Hai-Xia Wang, Xue-Wei Fu, Wei-Ping Liu, et al. Numerical simulation of tritium behavior under a postulated accident condition for CFETR TEP system. [J]. Nuclear Science and Techniques 34(7):109(2023) DOI: 10.1007/s41365-023-01260-w.
Numerical simulation of tritium behavior under a postulated accident condition for CFETR TEP system
摘要
Abstract
China Fusion Engineering Test Reactor (CFETR) is China's self-designed and ongoing next-generation fusion reactor project. Tritium confinement systems in CFETR guarantee that the radiation level remains below the safety limit during tritium handling and operation in the fuel cycle system. Our tritium technology team is responsible for studying tritium transport behavior in the CFETR tritium safety confinement system of the National Key R&D Program of China launched in 2017, and we are conducting CFETR tritium plant safety analysis by using CFD software. In this paper, the tritium migration and removal behavior were studied under a postulated accident condition for the Tokamak Exhaust Processing (TEP) system of CFETR. The quantitative results of the transport behavior of tritium in the process room and glove box during the whole accident sequence (e.g., tritium release, alarm, isolation, and tritium removal) have been presented. The results support the detailed design and engineering demonstration-related research of CFETR tritium plant.
关键词
Keywords
China Fusion Engineering Test Reactor (CFETR)Tokamak Exhaust Processing (TEP) systemNumerical simulationTritium transport behaviorTritium confinement systemAccident condition
references
M. Glugla, A. Antipenkov, S. Beloglazov et al., The ITER tritium systems. Fusion Eng. Des. 82, 472-287 (2007). doi: 10.1016/j.fusengdes.2007.02.025http://doi.org/10.1016/j.fusengdes.2007.02.025
Y.N. Hrstensmeyer, B. Butler, C. Day et al., Analysis of the EU-DEMO fuel cycle elements: Intrinsic impact of technology choices. Fusion Eng. Des. 136, 314-318 (2018). doi: 10.1016/j.fusengdes.2018.02.015http://doi.org/10.1016/j.fusengdes.2018.02.015
X.L. Wang, G.M. Ran, H.Y. Wang, et al., Current progress of tritium fuel cycle technology for CFETR. J. Fusion Energ. 38, 125-137 (2019). doi: 10.1007/s10894-018-0158-1http://doi.org/10.1007/s10894-018-0158-1
X.C. Nie, J. Li, S.L. Liu et al., Global variance reduction method for global Monte Carlo particle transport simulations of CFETR. Nucl. Sci. Tech. 28, 115 (2017). doi: 10.1007/s41365-017-0270-3http://doi.org/10.1007/s41365-017-0270-3
Y. Du, Y. Yang, S.B. Jiang et al., An autocontrol detritiation system. Nuclear Techniques 33, 233-236 (2010). (in Chinese)
T. Hayashi, K. Kobayashi, Y. Iwai, et al., Tritium behavior intentionally released in the radiological controlled room under the US-Japan collaboration at TSTA/LANL. Fusion Technol. 34(3P2), 521-525(1998). doi: 10.13182/FST98-A11963665http://doi.org/10.13182/FST98-A11963665
T. Hayashi, K. Kobayashi, Y. Iwai, Tritium behavior in the Caisson, a simulated fusion reactor room. Fusion Eng. Des. 51, 543-548 (2000). doi: 10.1016/S0920-3796(00)00214-3http://doi.org/10.1016/S0920-3796(00)00214-3
Y. Iwai, T. Hayashi, T. Yamanishi, et al., Simulation of tritium behavior after intended tritium release in ventilated room. J. Nucl. Sci. Technol. 38, 63-75 (2001). doi: 10.1080/18811248.2001.9715008http://doi.org/10.1080/18811248.2001.9715008
Y. Iwai, T. Hayashi, K. Kobayashi, et al., Simulation study of intentional tritium release experiments in the caisson assembly for tritium safety at the TPL/JAERI. Fusion Eng. Des. 54, 523-535 (2001). doi: 10.1016/S0920-3796(00)00581-0http://doi.org/10.1016/S0920-3796(00)00581-0
W Li, H.Q Kou, X.G. Zeng, et al., Numerical simulations on the leakage and diffusion of tritium. Fusion Eng. Des. 159, 111749 (2020). doi: 10.1016/j.fusengdes.2020.111749http://doi.org/10.1016/j.fusengdes.2020.111749
H.M. Sahin, G. Tunc, A. Karakoc, et al., Neutronic study on the effect of first wall material thickness on tritium production and material damage in a fusion reactor. Nucl. Sci. Tech. 33, 43 (2022). doi: 10.1007/s41365-022-01029-7http://doi.org/10.1007/s41365-022-01029-7
C.J. Li, X.F. Cai, M.Q. Xiao, et al., Analysis on the influencing factors of radioactive tritium leakage and diffusion from an indoor high-pressure storage vessel. Nucl. Sci. Tech. 33, 151 (2022). doi: 10.1007/s41365-022-01147-2http://doi.org/10.1007/s41365-022-01147-2
B. Feng, W.H. Zhuo, Levels and behavior of environmental tritium in East Asia. Nucl. Sci. Tech. 33, 86 (2022). doi: 10.1007/s41365-022-01073-3http://doi.org/10.1007/s41365-022-01073-3
J.C. Han, H.X. Wang, T.S. Li et al., Simulation study of tritium transport in CFETR TEP glove box based on COMSOL. Nuclear Safety 21(5), 72-80 (2022) doi: 10.16432/j.cnki.1672-5360.2022.05.012http://doi.org/10.16432/j.cnki.1672-5360.2022.05.012 (in Chinese)
H.X. Wang, X.W. Fu, J.C. Han et al., Numerical simulation of tritium behavior in tritium confinement system for China fusion engineering test reactor. Paper presented at the 9th Computational Fluid Dynamics for Nuclear Reactor Safety, Texas A&M University, 20-22 February 2023
D.H. Daher, M. Kotb, A.M. Khalaf et al., Simulation of a molten salt fast reactor using the COMSOL Multiphysics software. Nucl. Sci. Tech. 31, 115 (2020). doi: 10.1007/s41365-020-00833-3http://doi.org/10.1007/s41365-020-00833-3
ITER Organization, Preliminary Safety Report (RPrS). (DAC files, Saint Paul-lez-Durance, 2011)
G.M. Ran, J.G. Cai, H.Y. Wang et al., The CFETR tritium plant: Requirements and design progress. Fusion Eng. Des. 159, 111930 (2020). doi: 10.1016/j.fusengdes.2020.111930http://doi.org/10.1016/j.fusengdes.2020.111930
M. Saeed, J.Y. Yu, A.A.A. Abdalla et al., An assessment of k-ε turbulence models for gas distribution analysis. Nucl. Sci. Tech. 28, 146 (2017). doi: 10.1007/s41365-017-0304-xhttp://doi.org/10.1007/s41365-017-0304-x
G.Y. Liu, Dissertation, University of South China, 2017. (in Chinese)
Numerical analysis of heat transfer enhancement on steam condensation in the presence of air outside the tube
Modeling of irradiation-induced damage and failure behaviors of fuel foil/cladding interface in UMo/Zr monolithic fuel plates
Attenuation characteristics of electromagnetic waves in plasma generated by coating radionuclide on surface structures
Numerical investigation of natural convection characteristics of a heat pipe-cooled passive residual heat removal system for molten salt reactors
Particle dispersion modeling in ventilated room using artificial neural network
Related Author
No data
Related Institution
China Nuclear Engineering Consulting Co., Ltd.
Heilongjiang Provincial Key Laboratory of Nuclear Power System & Equipment, Harbin Engineering University
Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China
Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University
Key Laboratory of Nuclear Technology Application and Radiation Protection in Astronautics, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics