1.Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China
† shiss@mail.ccnu.edu.cn
Scan for full text
Cite this article
Li-Ke Liu, Hua Pei, Ya-Ping Wang, et al. Event plane determination from the zero degree calorimeter at the Cooling Storage Ring external-target experiment. [J]. Nuclear Science and Techniques 34(7):100(2023)
Li-Ke Liu, Hua Pei, Ya-Ping Wang, et al. Event plane determination from the zero degree calorimeter at the Cooling Storage Ring external-target experiment. [J]. Nuclear Science and Techniques 34(7):100(2023) DOI: 10.1007/s41365-023-01262-8.
The Cooling Storage Ring external-target experiment (CEE) spectrometer is used to study the nuclear matter created in heavy-ion collisions at ,, = 2.1-2.4 GeV with the aim to reveal the quantum chromodynamics phase structure in the high-baryon density region. Collective flow is considered an effective probe for evaluating the properties of media during high-energy nuclear collisions. One of the main functions of the zero-degree calorimeter (ZDC), a subdetector system in the CEE, is to determine the reaction plane in heavy-ion collisions. This step is crucial for measuring the collective flow and other reaction-plane-related analyses. In this paper, we illustrate the procedures for event-plane determination using the ZDC. Finally, isospin-dependent quantum molecular dynamics model-based predictions of the rapidity dependence of the directed and elliptical flows for ,p,d,t,3,He, and ,4,He, produced in 2.1 GeV U+U collisions, are presented.
QCD phase structureHeavy-ion collisionsCollective flowReaction planeZero-Degree Calorimeter
P. B. Munzinger and J. Stachel, The quest for the quark-gluon plasma. Nature 448, 302-309 (2007). doi: 10.1038/nature06080http://doi.org/10.1038/nature06080
I. Arsene, I.G. Bearden, D. Beavis et al., Quark gluon plasma and color glass condensate at RHIC? Perspective of the BRAHMS experiment. Nucl. Phys. A 757, 1-27 (2005). doi: 10.1016/j.nuclphysa.2005.02.130http://doi.org/10.1016/j.nuclphysa.2005.02.130
B.B. Back, M.D. Baker, M. Ballintijn et al., The PHOBOS perspective on discoveries at RHIC. Nucl. Phys. A 757, 28-101 (2005). doi: 10.1016/j.nuclphysa.2005.03.084http://doi.org/10.1016/j.nuclphysa.2005.03.084
K. Adcox, S.S. Adler, S. Afanasiev et al., Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration. Nucl. Phys. A 757, 184-283 (2005). doi: 10.1016/j.nuclphysa.2005.03.086http://doi.org/10.1016/j.nuclphysa.2005.03.086
J. Adams, M.M. Aggarwal, Z. Ahammed et al., Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration's critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 757, 102-183 (2005). doi: 10.1016/j.nuclphysa.2005.03.085http://doi.org/10.1016/j.nuclphysa.2005.03.085
A. Bazavov, T. Bhattacharya, M. Cheng et al., Chiral and deconfinement aspects of the QCD transition. Phys. Rev. D 85, 054503 (2012). doi: 10.1103/PhysRevD.85.054503http://doi.org/10.1103/PhysRevD.85.054503
K. Fukushima and C. Sasaki, The phase diagram of nuclear and quark matter at high baryon density. Prog. Part. Nucl. Phys 72, 99-154 (2013). doi: 10.1016/j.ppnp.2013.05.003http://doi.org/10.1016/j.ppnp.2013.05.003
Y. Aoki, G. Endrodi, Z. Fodor et al., The Order of the quantum chromodynamics transition predicted by the standard model of particle physics. Nature 443, 675-678 (2006). doi: 10.1038/nature05120http://doi.org/10.1038/nature05120
K. Fukushima and T. Hatsuda, The phase diagram of dense QCD. Rept. Prog. Phys. 74, 014001 (2011). doi: 10.1088/0034-4885/74/1/014001http://doi.org/10.1088/0034-4885/74/1/014001
A. Bzdak, S. Esumi, V. Koch et al., Mapping the phases of quantum chromodynamics with beam energy scan. Phys. Rept. 853, 1-87 (2020). doi: 10.1016/j.physrep.2020.01.005http://doi.org/10.1016/j.physrep.2020.01.005
X. Luo, S. Shi, N. Xu et al., A study of the properties of the QCD phase diagram in high-energy nuclear collisions. Particle 3(2), 278-307 (2020). doi: 10.3390/particles3020022http://doi.org/10.3390/particles3020022
H.Z. Huang, F. Liu, X.F. Luo et al., Collective excitation in high-energy nuclear collisions – In memory of professor Lianshou Liu. Symmetry 15, 499 (2023). doi: 10.3390/sym15020499http://doi.org/10.3390/sym15020499
L. Lü, H. Yi, Z.G. Xiao et al., Conceptual design of the HIRFL-CSR external-target experiment. Sci. China Phys. Mech. Astron. 60(1), 012021 (2017). doi: 10.1007/s11433-016-0342-xhttp://doi.org/10.1007/s11433-016-0342-x
C.J. Horowitz, E.F. Brown, Y. Kim et al., A way forward in the study of the symmetry energy: experiment, theory, and observation. J. Phys. G 41, 093001 (2014). doi: 10.1088/0954-3899/41/9/093001http://doi.org/10.1088/0954-3899/41/9/093001
S. Zhang, J.H. Chen, H. Crawford et al., Searching for onset of deconfinement via hypernuclei and baryon-strangeness correlations. Phys. Lett. B 684, 224-227 (2010). doi: 10.1016/j.physletb.2010.01.034http://doi.org/10.1016/j.physletb.2010.01.034
A. Andronic, D. Blaschke, P. Braun-Munzinger et al., Hadron production in ultra-relativistic nuclear collisions: Quarkyonic matter and a triple point in the phase diagram of QCD. Nucl. Phys. A 837, 65-86 (2010). doi: 10.1016/j.nuclphysa.2010.02.005http://doi.org/10.1016/j.nuclphysa.2010.02.005
S.A. Voloshin, A. M. Poskanzer, R. Snellings, Collective phenomena in non-central nuclear collisions. Landolt-Bornstein 23, 293-333 (2010). doi: 10.1007/978-3-642-01539-710http://doi.org/10.1007/978-3-642-01539-710
S.A. Bass, M. Belkacem, M. Bleicher et al., Microscopic models for ultrarelativistic heavy ion collisions. Prog. Part. Nucl. Phys. 41, 255-369 (1998). doi: 10.1016/S0146-6410(98)00058-1http://doi.org/10.1016/S0146-6410(98)00058-1
J. Steinheimer, A. motornenko, A. Sorensen et al., The high-density equation of state in heavy-ion collisions: constraints from proton flow. Eur. Phys. J. C, 82(10), 911 (2022). doi: 10.1140/epjc/s10052-022-10894-whttp://doi.org/10.1140/epjc/s10052-022-10894-w
D. Oliinychenko, A. Sorensen, V. Kochet al., Sensitivity of Au+Au collisions to the symmetric nuclear matter equation of state at 2 – 5 nuclear saturation densities. https://arxiv.org/abs/2208.11996arXiv:2208.11996https://arxiv.org/abs/2208.11996arXiv:2208.11996
L. Adamczyk, J.K. Adkins, G. Agakishiev et al., Centrality and transverse momentum dependence of elliptic flow of multistrange hadrons and ϕ meson in Au+Au collisions at = 200 GeV. Phys. Rev. Lett. 116(6), 062301 (2016). doi: 10.1103/PhysRevLett.116.062301http://doi.org/10.1103/PhysRevLett.116.062301
L. Adamczyk, J.K. Adkins, G. Agakishiev et al., Measurement of D0 azimuthal anisotropy at midrapidity in Au+Au collisions at = 200 GeV. Phys. Rev. Lett. 118(21), 212301 (2017). doi: 10.1103/PhysRevLett.118.212301http://doi.org/10.1103/PhysRevLett.118.212301
S. Shi, An experimental review on elliptic flow of strange and multistrange hadrons in relativistic heavy ion collisions. Adv. High Energy Phys. 2016, 1987432 (2016). doi: 10.1155/2016/1987432http://doi.org/10.1155/2016/1987432
Y. Nara and A. Ohnishi, Mean-field update in the JAM microscopic transport model: Mean-field effects on collective flow in high-energy heavy-ion collisions at = 2–20 GeV energies. Phys. Rev. C 105(1), 014911 (2022). doi: 10.1103/PhysRevC.105.014911http://doi.org/10.1103/PhysRevC.105.014911
Y. Nara, A. Jinno, K. Murase et al., Directed flow of Λ in high-energy heavy-ion collisions and Λ potential in dense nuclear matter. Phys. Rev. C 106(4), 044902 (2022). doi: 10.1103/PhysRevC.106.044902http://doi.org/10.1103/PhysRevC.106.044902
S. Lan and S. Shi, Anisotropic flow in high baryon density region. Nucl. Sci. Tech. 33(3), 21 (2022). doi: 10.1007/s41365-022-01006-0http://doi.org/10.1007/s41365-022-01006-0
L. Adamczyk, J.K. Adkins, G. Agakishiev et al., Beam-energy dependence of the directed flow of protons, antiprotons, and pions in Au+Au collisions. Phys. Rev. Lett. 112(16) 162301 (2014). doi: 10.1103/PhysRevLett.112.162301http://doi.org/10.1103/PhysRevLett.112.162301
M.S. Abdallah, B.E. Aboona, J. Adam et al., Disappearance of partonic collectivity in = 3 GeV Au+Au collisions at RHIC. Phys. Lett. B 827, 137003 (2022). doi: 10.1016/j.physletb.2022.137003http://doi.org/10.1016/j.physletb.2022.137003
H. Elfner, J.Y. Jia, Z.W. Linet al., Dynamical evolution of heavy-ion collisions. In: Luo, X., Wang, Q., Xu, N., Zhuang, P. (eds) Properties of QCD Matter at High Baryon Density. Springer, Singapore. doi: 10.1007/978-981-19-4441-3_3http://doi.org/10.1007/978-981-19-4441-3_3
L. Adamczyk, J.K. Adkins, G. Agakishiev et al., Beam-energy-dependent two-pion interferometry and the freeze-out eccentricity of pions measured in heavy ion collisions at the star detector. Phys. Rev. C 92, 014904 (2015). doi: 10.1103/PhysRevC.92.014904http://doi.org/10.1103/PhysRevC.92.014904
K. Fukushima, D.E. Kharzeev, H.J. Warringa et al., The chiral magnetic effect. Phys. Rev. D 78, 074033 (2008). doi: 10.1103/PhysRevD.78.074033http://doi.org/10.1103/PhysRevD.78.074033
L. Adamczyk, J. Adam, L. Adamczyk et al., Search for the chiral magnetic effect via charge-dependent azimuthal correlations relative to spectator and participant planes in Au+Au collisions at = 200 GeV. Phys. Rev. Lett. 128, 092301 (2022). doi: 10.1103/PhysRevLett.128.092301http://doi.org/10.1103/PhysRevLett.128.092301
X. Zhao, G. Ma, Search for the chiral magnetic effect in collisions between two isobars with deformed and neutron-rich nuclear structures. Phys. Rev. C 106(3), 034909 (2022). doi: 10.1103/PhysRevC.106.034909http://doi.org/10.1103/PhysRevC.106.034909
B. Chen, X. Zhao, G. Ma, On the difference between signal and background of the chiral magnetic effect relative to spectator and participant planes in isobar collisions at = 200 GeV. https://arxiv.org/abs/2301.12076arXiv:2301.12076https://arxiv.org/abs/2301.12076arXiv:2301.12076
C. Hartnack, R.K. Puri, J. Aichelin et al., Modeling the many body dynamics of heavy ion collisions: Present status and future perspective. Eur. Phys. J. A 1, 151-169 (1998). doi: 10.1007/s100500050045http://doi.org/10.1007/s100500050045
H. Wang et al., Design and tests of the prototype a beam monitor of the CSR external target experiment. Nucl. Sci. Tech. 33(3), 36 (2022). doi: 10.1007/s41365-022-01021-1http://doi.org/10.1007/s41365-022-01021-1
W. Huang, F. Lu, H. Li et al., Laser test of the prototype of CEE time projection chamber. Nucl. Sci. Tech., 29(3), 41 (2018). doi: 10.1007/s41365-018-0382-4http://doi.org/10.1007/s41365-018-0382-4
D.D. Hu, J.M. Lu, J. Zhou et al., Extensive beam test study of prototype MRPCs for the T0 detector at the CSR external-target experiment. Eur. Phys. J. C 80(3), 282 (2020). doi: 10.1140/epjc/s10052-020-7804-2http://doi.org/10.1140/epjc/s10052-020-7804-2
X. Wang, D. Hu, M. Shao et al., CEE inner TOF prototype design and preliminary test results. JINST 17(09), P09023 (2022). doi: 10.1088/1748-0221/17/09/P09023http://doi.org/10.1088/1748-0221/17/09/P09023
B. Wang, D. Han, Y. Wang et al., The CEE-eTOF wall constructed with new sealed MRPC. JINST 15(08), C08022 (2020). doi: 10.1088/1748-0221/15/08/C08022http://doi.org/10.1088/1748-0221/15/08/C08022
L. Lyu, H. Yi, L. Duan et al., Simulation and prototype testing of multi-wire drift chamber arrays for the CEE. Nucl. Sci. Tech. 31(1), 11 (2020). doi: 10.1007/s41365-019-0716-xhttp://doi.org/10.1007/s41365-019-0716-x
S.H. Zhu, H.B. Yang, H. Pei et al., Prototype design of readout electronics for Zero Degree Calorimeter in the HIRFL-CSR external-target experiment. JINST 16(08), P08014 (2021). doi: 10.1088/1748-0221/16/08/P08014http://doi.org/10.1088/1748-0221/16/08/P08014
Saint-Gobain, BC-408 material. https://www.crystals.saint-gobain.com/radiation-detection-scintillators/plastic-scintillators/bc400-bc404-bc408-bc412-bc416https://www.crystals.saint-gobain.com/radiation-detection-scintillators/plastic-scintillators/bc400-bc404-bc408-bc412-bc416
J. Adams, A. Ewigleben, S. Garrett et al., The STAR event plane detector. Nucl. Instrum. Meth. A 968, 163970 (2020). doi: 10.1016/j.nima.2020.163970http://doi.org/10.1016/j.nima.2020.163970
J. Aichelin, ’Quantum’ molecular dynamics: A Dynamical microscopic n-body approach to investigate fragment formation and the nuclear equation of state in heavy-ion collisions. Phys. Rept. 202, 233-360 (1991). doi: 10.1016/0370-1573(91)90094-3http://doi.org/10.1016/0370-1573(91)90094-3
R. Brun, F. Bruyant, F. Carminatiet al., GEANT detector description and simulation tool. (1994). doi: 10.17181/CERN.MUHF.DMJ1http://doi.org/10.17181/CERN.MUHF.DMJ1
A. M. Poskanzer and S. A. Voloshin, Methods for analyzing anisotropic flow in relativistic nuclear collisions. Phys. Rev. C 58, 1671-1678 (1998). doi: 10.1103/PhysRevC.58.1671http://doi.org/10.1103/PhysRevC.58.1671
M. Ding, Y.P. Zhang, Y.J. Zhang et al., Calibration of the DAMPE plastic scintillator detector and its on-orbit performance. Res. Astron. Astrophys. 19(3), 047 (2019). doi: 10.1088/1674-4527/19/3/47http://doi.org/10.1088/1674-4527/19/3/47
J. Adamczewski-Musch, O. Arnold, C. Behnke et al., Directed, elliptic, and higher order flow harmonics of protons, deuterons, and tritons in Au+Au collisions at = 2.4 GeV. Phys. Rev. Lett. 125, 262301 (2020). doi: 10.1103/PhysRevLett.125.262301http://doi.org/10.1103/PhysRevLett.125.262301
M.S. Abdallah, B.E. Aboona, J. Adam et al., Light nuclei collectivity from = 3 GeV Au+Au collisions at RHIC. Phys. Lett. B 827,136941 (2022). doi: 10.1016/j.physletb.2022.136941http://doi.org/10.1016/j.physletb.2022.136941
P. Russotto, M.D. Cozma, A.Le Fevre et al., Flow probe of symmetry energy in relativistic heavy-ion reactions. Eur. Phys. J. A 50, 38 (2014). doi: 10.1140/epja/i2014-14038-5http://doi.org/10.1140/epja/i2014-14038-5
M. Wang, J.Q. Tao, H. Zheng et al., Number-of-constituent-quark scaling of elliptic flow: a quantitative study. Nucl. Sci. Tech. 33, 37 (2022). doi: 10.1007/s41365-022-01019-9http://doi.org/10.1007/s41365-022-01019-9
J. Steinheimer, K. Gudima, A. Botvina et al., Hypernuclei, dibaryon and antinuclei production in high energy heavy-ion collisions: Thermal production vs. coalescence. Phys. Lett. B 714, 85-91 (2012). doi: 10.1016/j.physletb.2012.06.069http://doi.org/10.1016/j.physletb.2012.06.069
T.T. Wang and Y.G. Ma, Nucleon-number scalings of anisotropic flows and nuclear modification factor for light nuclei in the squeeze-out region. Eur. Phys. J. A 55, 102 (2019). doi: 10.1140/epja/i2019-12788-0http://doi.org/10.1140/epja/i2019-12788-0
T.Z. Yan, Y.G. Ma, X.Z. Cai et al., Scaling of anisotropic flow and momentum-space densities for light particles in intermediate energy heavy ion collisions. Phys. Lett. B 638, 50-54 (2006). doi: 10.1016/j.physletb.2006.05.018http://doi.org/10.1016/j.physletb.2006.05.018
L.M. Fang, Y.G. Ma, S. Zhang, Simulation of collective flow of protons and deuterons in Au+Au collisions at Ebeam=1.23A GeV with the isospin-dependent quantum molecular dynamics model. Phys. Rev. C 107, 044904 (2023). doi: 10.1103/PhysRevC.107.044904http://doi.org/10.1103/PhysRevC.107.044904
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution