1.School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
2.Department of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China
3.School of Math and Physics, University of South China, Hengyang 421001, China
4.College of Physics and Electronics, Central South University, Changsha 410083, China
5.National Exemplary Base for International Sci & Tech. Collaboration of Nuclear Energy and Nuclear Safety, University of South China, Hengyang 421001, China
6.Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment, University of South China, Hengyang 421001, China
7.Key Laboratory of Low Dimensional Quantum Structures and Quantum Control, Hunan Normal University, Changsha 410081, China
† wuxijun1980@yahoo.cn
‡ lixiaohuaphysics@126.com
Scan for full text
De-Xing Zhu, Yang-Yang Xu, Li-Jia Chu, et al. Two-proton radioactivity from excited states of proton-rich nuclei within Coulomb and Proximity Potential Model. [J]. Nuclear Science and Techniques 34(9):130(2023)
De-Xing Zhu, Yang-Yang Xu, Li-Jia Chu, et al. Two-proton radioactivity from excited states of proton-rich nuclei within Coulomb and Proximity Potential Model. [J]. Nuclear Science and Techniques 34(9):130(2023) DOI: 10.1007/s41365-023-01268-2.
In the present work, we extend the Coulomb and Proximity Potential Model (CPPM) to study two-proton (2p) radioactivity from excited states while the proximity potential is chosen as AW95 proposed by Aage Withner in 1995. Demonstration reveals that the theoretical results acquired by CPPM exhibit a high level of consistency with prior theoretical models, such as the unified fission model (UFM), generalized liquid drop model (GLDM) and effective liquid drop model (ELDM). Furthermore, within the CPPM, we predicted the half-lives of potential 2p radioactive nuclei for which experimental data are currently unavailable. The predicted results were then assessed, compared with UFM, ELDM, and GLDM models, and examined in detail.
2p radioactivityCPPMhalf-livesexcited state
X. D. Sun, P. Guo and X. H. Li, Systematic study of α decay half-lives for even-even nuclei within a two-potential approach. Phys. Rev. C 93, 034316 (2016). doi: 10.1103/PhysRevC.93.034316http://doi.org/10.1103/PhysRevC.93.034316
X. D. Sun, P. Guo and X. H. Li, Systematic study of favored α-decay half-lives of closed shell odd-A and doubly-odd nuclei related to ground and isomeric states. Phys. Rev. C 94, 024338 (2016). doi: 10.1103/PhysRevC.94.024338http://doi.org/10.1103/PhysRevC.94.024338
C. Z. Shi and Y. G. Ma, α-clustering effect on flows of direct photons in heavy-ion collisions. Nucl. Sci. Tech 32, 66 (2021). doi: 10.1007/s41365-021-00897-9http://doi.org/10.1007/s41365-021-00897-9
M. Ji and C. Xu, Quantum Anti-Zeno Effect in Nuclear β Decay. Chin. Phys. Lett 38, 032301 (2021). doi: 10.1088/0256-307X/38/3/032301http://doi.org/10.1088/0256-307X/38/3/032301
C. W. Ma, H. L. Wei, X. Q. Liu et al., Nuclear fragments in projectile fragmentation reactions. Prog. Part. Nucl. Phys 121, 103911 (2021). doi: 10.1016/j.ppnp.2021.103911http://doi.org/10.1016/j.ppnp.2021.103911
C. W. Ma, J. P. Wei, X. X. Chen et al., Precise machine learning models for fragment production in projectile fragmentation reactions using Bayesian neural networks. Chin. Phys. C 46, 074104 (2022). doi: 10.1088/1674-1137/ac5efbhttp://doi.org/10.1088/1674-1137/ac5efb
L. L. Zhu, B. Wang, M. Wang and H. Zheng, Energy and centrality dependence of light nuclei production in relativistic heavy-ion collisions. Nucl. Sci. Tech 33, 45 (2022). doi: 10.1007/s41365-022-01028-8http://doi.org/10.1007/s41365-022-01028-8
C. Shen and L. Yan, Recent development of hydrodynamic modeling in heavy-ion collisions. Nucl. Sci. Tech 31, 122 (2020). doi: 10.1007/s41365-020-00829-zhttp://doi.org/10.1007/s41365-020-00829-z
F. Zhang and J. Su, Probing neutron-proton effective mass splitting using nuclear stopping and isospin mix in heavy-ion collisions in GeV energy region. Nucl. Sci. Tech 31, 77 (2020). doi: 10.1007/s41365-020-00787-6http://doi.org/10.1007/s41365-020-00787-6
Y. J. Wang, F. H. Guan, X. Y. Diao et al., CSHINE for studies of HBT correlation in heavy ion reactions. Nucl. Sci. Tech 32, 4 (2021). doi: 10.1007/s41365-020-00842-2http://doi.org/10.1007/s41365-020-00842-2
M. Pfützner, M. Karny, L. V. Grigorenkoet et al., Radioactive decays at limits of nuclear stability. Rev. Mod. Phys 84 (2012) 567. doi: 10.1103/RevModPhys.84.567http://doi.org/10.1103/RevModPhys.84.567
E. Olsen, M. Pfützner and N. Birge, Landscape of Two-Proton Radioactivity. Phys. Rev. Lett 110 (2013) 222501. doi: 10.1103/PhysRevLett.110.222501http://doi.org/10.1103/PhysRevLett.110.222501
K. W. Brown, R. J. Charity, L. G. Sobotka et al., Observation of Long-Range Three-Body Coulomb Effects in the Decay of 16Ne. Phys. Rev. Lett 113 (2014) 232501. doi: 10.1103/PhysRevLett.113.232501http://doi.org/10.1103/PhysRevLett.113.232501
K. P. Santhosh and Indu. Sukumaran, Description of proton radioactivity using the Coulomb and proximity potential model for deformed nuclei. Phys. Rev. C 96 (2017) 034619. doi: 10.1103/PhysRevC.96.034619http://doi.org/10.1103/PhysRevC.96.034619
D. S. Delion and S. A. Ghinescu, Two-proton emission systematics. Phys. Rev. C 105 (2022) L031301. doi: 10.1103/PhysRevC.105.L031301http://doi.org/10.1103/PhysRevC.105.L031301
D. N. Basu, P. Roy Chowdhury and C. Samanta, Folding model analysis of proton radioactivity of spherical proton emitters. Phys. Rev. C 72 (2005) 051601(R). doi: 10.1103/PhysRevC.72.051601http://doi.org/10.1103/PhysRevC.72.051601
X. Pan, Y. T. Zou, H. M. Liu et al., Released energy formula for proton radioactivity based on the liquid-drop model. Commun. Theor. Phys 73 (2021) 075302. doi: 10.1088/1572-9494/abf822http://doi.org/10.1088/1572-9494/abf822
H. M. Liu, J. Zhang, Z. H. Li et al., Microscopic nuclear equation of state at finite temperature and stellar stability. Phys. Rev. C 106 (2022) 025801. doi: 10.1103/PhysRevC.106.025801http://doi.org/10.1103/PhysRevC.106.025801
Y. T. Wang, D. Q. Fang, X. X. Xu et al., Implantation-decay method to study the β-delayed charged particle decay. Nucl. Sci. Tech 29 (2018) 98. doi: 10.1007/s41365-018-0438-5http://doi.org/10.1007/s41365-018-0438-5
B. A. Brown, Diproton decay of nuclei on the proton drip line. Phys.Rev.C 43 (1991) R1513. doi: 10.1103/PhysRevC.43.R1513http://doi.org/10.1103/PhysRevC.43.R1513
L. V. Grigorenkoet, R. C. Johnson, I. G. Mukha et al., Theory of Two-Proton Radioactivity with Application to 19Mg and 48Ni. Phys.Rev.Lett 85 (2000) 22. doi: 10.1103/PhysRevLett.85.22http://doi.org/10.1103/PhysRevLett.85.22
I. Mukha, L. V. Grigorenkoet, X. Xu et al., Observation and Spectroscopy of New Proton-Unbound Isotopes 30Arand 29Cl: An Interplay of Prompt Two-Proton and Sequential Decay. Phys.Rev.Lett 115 (2015) 202501. doi: 10.1103/PhysRevLett.115.202501http://doi.org/10.1103/PhysRevLett.115.202501
J. P. Cui, Y. H. Gao, Y. Z. Wang et al., Two-proton radioactivity within a generalized liquid drop model. Phys. Rev. C 101 (2020) 014301. doi: 10.1103/PhysRevC.101.014301http://doi.org/10.1103/PhysRevC.101.014301
G. Royer, Calculation of two-proton radioactivity and application to 9Be, 6,7Li, 3,6He,and 2,3H emissions. Phys. Rev. C 106 (2022) 034605. doi: 10.1103/PhysRevC.106.034605http://doi.org/10.1103/PhysRevC.106.034605
F. Z. Xing, J. P. Cui, Y. H. Gao and J. Z. Gu, Two-proton radioactivity of exotic nuclei beyond proton drip-line. Commun. Theor. Phys 73 (2021) 075301. doi: 10.1088/1572-9494/abfa00http://doi.org/10.1088/1572-9494/abfa00
B. Blank, M. Ploszajczak, Two-proton radioactivity. Rep. Prog. Phys 71 (2008) 046301. doi: 10.1088/0034-4885/71/4/046301http://doi.org/10.1088/0034-4885/71/4/046301
A. Kruppa, W. Nazarewicz, Gamow and R-matrix approach to proton emitting nuclei. Phys. Rev. C 69 (2004) 054311. doi: 10.1103/PhysRevC.69.054311http://doi.org/10.1103/PhysRevC.69.054311
L. S. Ferreira, M. C. Lopea and E. Maglione, Decays of drip line nuclei. Prog. Part. Nucl. Phys 59 (2007) 418. doi: 10.1016/j.ppnp.2007.01.011http://doi.org/10.1016/j.ppnp.2007.01.011
V. I. Goldansky, On neutron-deficient isotopes of light nuclei and the phenomena of proton and two-proton radioactivity. Nucl. Phys 19 (1960) 482. doi: 10.1016/0029-5582(60)90258-3http://doi.org/10.1016/0029-5582(60)90258-3
V. I. Goldansky, Two-proton radioactivity. Nucl. Phys 27 (1961) 648. doi: 10.1016/0029-5582(61)90309-1http://doi.org/10.1016/0029-5582(61)90309-1
Y. B. Zel’dovich, On the existence of new isotopes of light nuclei and the equation of state of neutrons. Sov. Phys. JETP 11 (1960) 812. https://www.osti.gov/biblio/4200134biblio/4200134https://www.osti.gov/biblio/4200134biblio/4200134
B. A. Brown, B. Blank and J. Giovinazzo, Hybrid model for two-proton radioactivity. Phys.Rev.C 100 (2019) 054332. doi: 10.1103/PhysRevC.100.054332http://doi.org/10.1103/PhysRevC.100.054332
O. A. P. Tavares and E. L. Medeiros, A calculation model to half-life estimate of two-proton radioactive decay process. Eur. Phys. J. A 54 (2018) 65. doi: 10.1140/epja/i2018-12495-4http://doi.org/10.1140/epja/i2018-12495-4
I. Sreeja and M. Balasubramaniam, An empirical formula for the half-lives of exotic two-proton emission. Eur. Phys. J. A 55 (2019) 33. doi: 10.1140/epja/i2019-12694-5http://doi.org/10.1140/epja/i2019-12694-5
H. M. Liu, X. Pan, Y. T. Zou et al., Systematic study of two-proton radioactivity within a Gamow-like model. Chin. Phys. C 45 (2021) 044110. doi: 10.1088/1674-1137/abe10fhttp://doi.org/10.1088/1674-1137/abe10f
M. Pfützner, E. Badura, C. Bingham et al., First evidence for the two-proton decay of 45Fe. Eur. Phys. J. A 14 (2002) 279. doi: 10.1140/epja/i2002-10033-9http://doi.org/10.1140/epja/i2002-10033-9
J. Giovinazzo, B. Blank, M Chartier et al., Two-Proton Radioactivity of 45Fe. Phys. Rev. Lett 89 (2002) 102501. doi: 10.1103/PhysRevLett.89.102501http://doi.org/10.1103/PhysRevLett.89.102501
J. Jänecke, The emission of protons from light neutron-deficient nuclei. Nucl. Phys 61 (1965) 326. doi: 10.1016/0029-5582(65)90907-7http://doi.org/10.1016/0029-5582(65)90907-7
D. F. Geesaman, R. L. McGrath, P. M. S. Lesser et al., Particle decay of 6Be. Phys. Rev. C 15 (1977) 1835. doi: 10.1103/PhysRevC.15.1835http://doi.org/10.1103/PhysRevC.15.1835
Bochkarev O V, Chulkov L V, Korsheninnikov A A et al., Democratic decay of 6Be states. Nucl. Phys. A 505 (1989) 215. doi: 10.1016/0375-9474(89)90371-0http://doi.org/10.1016/0375-9474(89)90371-0
R. A. Kryger, A. Azhari, M. Hellström et al., Two-Proton Emission from the Ground State of 12O. Phys. Rev. Lett 74 (1995) 860. doi: 10.1103/PhysRevLett.74.860http://doi.org/10.1103/PhysRevLett.74.860
C. R. Bain, P. J. Woods, R. Coszach et al., Two proton emission induced via a resonance reaction. Phys. Lett. B 373 (1996) 35. doi: 10.1016/0370-2693(96)00109-8http://doi.org/10.1016/0370-2693(96)00109-8
M. D. Cable, J. Honkanen, R. F. Parry et al., Discovery of Beta-Delayed Two-Proton Radioactivity: 22Al. Phys. Rev. Lett 50 (1983) 404. doi: 10.1103/PhysRevLett.50.404http://doi.org/10.1103/PhysRevLett.50.404
J. Honkanen, M/ D. Cable, R. F. Parry et al., Beta-delayed two-proton decay of 26P. Phys. Lett. B 133 (1983) 146. doi: 10.1016/0370-2693(83)90547-6http://doi.org/10.1016/0370-2693(83)90547-6
J. Äystö, D. M. Moltz, X. J. Xu et al., Phys. Rev. Lett 55 (1985) 1384. doi: 10.1103/PhysRevLett.55.1384http://doi.org/10.1103/PhysRevLett.55.1384
B. Blank, F. Boué, S. Andriamonje et al., Spectroscopic studies of the βp and β2p decay of 23Si. Z. Phys. A 357 (1997) 247. doi: 10.1007/s002180050241http://doi.org/10.1007/s002180050241
V. Borrel, J. C. Jacmart and F. Pougheon, 31Ar and 27S: Beta-delayed two-proton emission and mass excess. Nucl. Phys 531 (1991) 353. doi: 10.1016/0375-9474(91)90616-Ehttp://doi.org/10.1016/0375-9474(91)90616-E
J. E. Reiff, M. A. C. Hotchkis and D. M. Moltz, A fast in-beam recoil catcher wheel and the observation of beta-delayed two-proton emission from 31Ar. Nucl. Instrum. Methods. A 276 (1989) 228. doi: 10.1016/0168-9002(89)90637-2http://doi.org/10.1016/0168-9002(89)90637-2
D. M. Moltz, J. C. Batchelder, T. F. Lang et al., Beta-delayed two-proton decay of 39Ti. Z. Phys. A 342 (1992) 273. doi: 10.1007/BF01291509http://doi.org/10.1007/BF01291509
V. Borrel, R. Anne, D. Bazin et al., The decay modes of proton drip-line nuclei with A between 42 and 47. Z. Phys. A 344 (1992) 135. doi: 10.1007/BF01291696http://doi.org/10.1007/BF01291696
J. Giovinazzo, B. Blank, C. Borcea et al., First Direct Observation of Two Protons in the Decay of 45Fe with a Time-Projection Chamber. Phys. Rev. Lett 99 (2007) 102501. doi: 10.1103/PhysRevLett.99.102501http://doi.org/10.1103/PhysRevLett.99.102501
C. Dossat, N. Adimi, F. Aksouh et al., The decay of proton-rich nuclei in the mass A=36-56 region. Nucl. Phys. A 792 (2007) 18. doi: 10.1016/j.nuclphysa.2007.05.004http://doi.org/10.1016/j.nuclphysa.2007.05.004
M. J. Chromik, B. A. Brown, M. Fauerbach et al., Excitation and decay of the first excited state of 17Ne. Phys. Rev. C 55 (1997) 1676. doi: 10.1103/PhysRevC.55.1676http://doi.org/10.1103/PhysRevC.55.1676
J. Gómez del Campo, A. Galindo-Uribarri, J. R. Beene et al., Decay of a Resonance in by the Simultaneous Emission of Two Protons. Phys. Rev. Lett 86 (2001) 43. doi: 10.1103/PhysRevLett.86.43http://doi.org/10.1103/PhysRevLett.86.43
G. Raciti, G. Cardella, M. De Napoli et al., Experimental Evidence of 2He Decay from 18Ne Excited States. Phys. Rev. Lett 100 (2008) 192503. doi: 10.1103/PhysRevLett.100.192503http://doi.org/10.1103/PhysRevLett.100.192503
M. J. Chromik, P. G. Thirolf, M. Thoennessen et al., Two-proton spectroscopy of low-lying states in 17Ne. Phys. Rev. C 66 (2002) 024313. doi: 10.1103/PhysRevC.66.024313http://doi.org/10.1103/PhysRevC.66.024313
T. Zerguerras, B. Blank, Y. Blumenfeld et al., Study of light proton-rich nuclei by complete kinematics measurements. Eur. Phys. J. A 20, 389 (2004). doi: 10.1140/epja/i2003-10176-1http://doi.org/10.1140/epja/i2003-10176-1
Y. G. Ma, D. Q. Fang, X. Y. Sun et al., Different mechanism of two-proton emission from proton-rich nuclei 23Al and 22Mg. Phys. Lett. B 743 (2015) 306. doi: 10.1016/j.physletb.2015.02.066http://doi.org/10.1016/j.physletb.2015.02.066
D. Q. Fang, Y. G. Ma, X. Y. Sun et al., Proton-proton correlations in distinguishing the two-proton emission mechanism of 23Al and 22Mg. Phys. Rev. C 94 (2016) 044621. doi: 10.1103/PhysRevC.94.044621http://doi.org/10.1103/PhysRevC.94.044621
C. J. Lin, X. X. Xu, H. M. Jia et al., Experimental study of two-proton correlated emission from 29S excited states. Phys. Rev. C 80 (2009) 014310. doi: 10.1103/PhysRevC.80.014310http://doi.org/10.1103/PhysRevC.80.014310
X. X. Xu, C. J. Lin, H. M. Jia et al., Correlations of two protons emitted from excited states of 28S and 27P Phys. Lett. B 727 (2013) 126. doi: 10.1016/j.physletb.2013.10.029http://doi.org/10.1016/j.physletb.2013.10.029
I. Mukha, E. Roeckl, L. Batist et al., Proton-proton correlations observed in two-proton radioactivity of 94Ag. Nature 439 (2006) 298. doi: 10.1038/nature04453http://doi.org/10.1038/nature04453
H. M. Liu, Y. T. Zou, X. Pan et al., New Geiger-Nuttall law for two-proton radioactivity. Chin. Phys. C 45 (2021) 024108. doi: 10.1088/1674-1137/abd01ehttp://doi.org/10.1088/1674-1137/abd01e
Y. J. Yao, G. L. Zhang, W. W. Qu et al., Comparative studies for different proximity potentials applied to α decay. Eur. Phys. J. A 51 (2015) 122. doi: 10.1140/epja/i2015-15122-0http://doi.org/10.1140/epja/i2015-15122-0
O. N. Ghodsi and A. Daei-Ataollah, Systematic study of α decay using various versions of the proximity formalism. Phys. Rev. C 93 (2016) 024612. doi: 10.1103/PhysRevC.93.024612http://doi.org/10.1103/PhysRevC.93.024612
J. G. Deng, X. H. Li, J. L. Chen et al., Systematic study of proton radioactivity of spherical proton emitters within various versions of proximity potential formalisms. Eur. Phys. J. A 55 (2019) 58. doi: 10.1140/epja/i2019-12728-0http://doi.org/10.1140/epja/i2019-12728-0
K. P. Santhosh and I. Sukumaran, Heavy particle decay studies using different versions of nuclear potentials. Eur. Phys. J. Plus 132 (2019) 431. doi: 10.1140/epjp/i2017-11743-xhttp://doi.org/10.1140/epjp/i2017-11743-x
Y. Z. Wang, S. J. Wang, Z. Y. Hou, and J. Z. Gu, Systematic study of α-decay energies and half-lives of superheavy nuclei. Phys. Rev. C 92 (2015) 064301. doi: 10.1103/PhysRevC.92.064301http://doi.org/10.1103/PhysRevC.92.064301
Y. Z. Wang, J. P. Cui, Y. L. Zhang et al., Competition between α decay and proton radioactivity of neutron-deficient nuclei. Phys. Rev. C 92 (2017) 064301. doi: 10.1103/PhysRevC.95.014302http://doi.org/10.1103/PhysRevC.95.014302
Y. Z. Wang, F. Z. Xing, Y. Xiao and J. Z. Gu, An improved semi-empirical relationship for cluster radioactivity. Chin. Phys. C 45 (2021) 044111. doi: 10.1088/1674-1137/abe112http://doi.org/10.1088/1674-1137/abe112
J. G. Deng, J. H. Cheng, B. Zheng and X. H. Li, α decay properties of 297Og within the two-potential approach. Chin. Phys. C 41 (2017) 124109. doi: 10.1088/1674-1137/41/12/124109http://doi.org/10.1088/1674-1137/41/12/124109
H. M. Liu, Y. T. Zou, P. Xiao et al., Systematic study of the α decay preformation factors of the nuclei around the Z = 82, N = 126 shell closures within the generalized liquid drop model. Chin. Phys. C 44 (2020) 094106. doi: 10.1088/1674-1137/44/9/094106http://doi.org/10.1088/1674-1137/44/9/094106
F. Z. Xing, H. Qi, J. P. Cui et al., An improved Gamow-like formula for α-decay half-lives. Nucl. Phys. A 1028 (2022) 122528. doi: 10.1016/j.nuclphysa.2022.122528http://doi.org/10.1016/j.nuclphysa.2022.122528
D. X. Zhu, H. M. Liu, Y. Y. Xu et al., Two-proton radioactivity within Coulomb and proximity potential model. Chin. Phys. C 46 (2022) 044106. doi: 10.1088/1674-1137/ac45efhttp://doi.org/10.1088/1674-1137/ac45ef
S. G. Nilsson, Binding states of individual nucleons in strongly deformed nuclei. Dan. Mat. Fys. Medd 29 (1955) 16. https://cds.cern.ch/record/212345/files/p1.pdfcds.cern.ch/record/212345/files/p1.pdfhttps://cds.cern.ch/record/212345/files/p1.pdfcds.cern.ch/record/212345/files/p1.pdf
J. J. Morehead, Asymptotics of radial wave equations. J. Math. Phys 36 (1955) 5431. doi: 10.1063/1.531270http://doi.org/10.1063/1.531270
J. Blocki, J. Randrup, W. J. Świątecki et al., Proximity forces. Ann. Phys 105 (1977) 427. doi: 10.1016/0003-4916(77)90249-4http://doi.org/10.1016/0003-4916(77)90249-4
A. Winther, Dissipation, polarization and fluctuation in grazing heavy-ion collisions and the boundary to the chaotic regime. Nucl. Phys. A 594 (1995) 203. doi: 10.1016/0375-9474(95)00374-Ahttp://doi.org/10.1016/0375-9474(95)00374-A
C. L. Guo and G. L. Zhang, Analysis of proton radioactivity of nuclei by using proximity potential with a new universal function. Eur. Phys. J. A 50 (2014) 187. doi: 10.1140/epja/i2014-14187-5http://doi.org/10.1140/epja/i2014-14187-5
L. Zheng, G. L. Zhang et al., Calculation of half-lives of cluster decay by using proximity potential with a new universal function. Nucl. Phys. A 915 (2013) 70. doi: 10.1016/j.nuclphysa.2013.06.012http://doi.org/10.1016/j.nuclphysa.2013.06.012
W. W. Qu, G. L. Zhang et al., Comparative studies of Coulomb barrier heights for nuclear models applied to sub-barrier fusion. Phys. Rev. C 90 (2014) 064603. doi: 10.1103/PhysRevC.90.064603http://doi.org/10.1103/PhysRevC.90.064603
R. Kumar and M. K. Sharma et al., Systematic study of various proximity potentials in 208Pb-daughter cluster radioactivity. Phys. Rev. C 85 (2014) 054612. doi: 10.1103/PhysRevC.85.054612http://doi.org/10.1103/PhysRevC.85.054612
I. Dutt, and R. K. Puri, Comparison of different proximity potentials for asymmetric colliding nuclei. Phys. Rev. C 81 (2010) 064609. doi: 10.1103/PhysRevC.81.064609http://doi.org/10.1103/PhysRevC.81.064609
F. Z. Xing, J. P. Cui, Y. Z. Wang et al., Two-proton emission from excited states of proton-rich nuclei. Acta Phys.Sin 71 (2022) 062301. doi: 10.7498/aps.71.20211839http://doi.org/10.7498/aps.71.20211839
F. Z. Xing, J. P. Cui, Y. Z. Wang and J. Z. Gu, Two-proton radioactivity of ground and excited states within a unified fission model. Chin. Phys. C 45 (2021) 124105. doi: 10.1088/1674-1137/ac2425http://doi.org/10.1088/1674-1137/ac2425
N. Anyas-Weiss, J. C. Cornell, P. S. Fisher et al., Nuclear structure of light nuclei using the selectivity of high energy transfer reactions with heavy ions. Phys. Rep 12 (1974) 101. doi: 10.1016/0370-1573(74)90045-3http://doi.org/10.1016/0370-1573(74)90045-3
D. X. Zhu, Y. Y. Xu, H. M. Liu et al., ITwo-proton radioactivity of the excited state within the Gamowlike and modified Gamow-like models. Nucl. Sci. Tech 32 (2022) 122. doi: 10.1007/s41365-022-01116-9http://doi.org/10.1007/s41365-022-01116-9
0
Views
5
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution