1.Key Laboratory of Beam Technology of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
2.Key Laboratory of Beam Technology of Ministry of Education, Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing 100875, China
3.CAS Key Laboratory of High Precision Nuclear Spectroscopy, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
4.Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000, China
† caolg@bnu.edu.cn
‡ fszhang@bnu.edu.cn
Scan for full text
Rong An, Shuai Sun, Li-Gang Cao, et al. Constraining nuclear symmetry energy with the charge radii of mirror-pair nuclei. [J]. Nuclear Science and Techniques 34(8):119(2023)
Rong An, Shuai Sun, Li-Gang Cao, et al. Constraining nuclear symmetry energy with the charge radii of mirror-pair nuclei. [J]. Nuclear Science and Techniques 34(8):119(2023) DOI: 10.1007/s41365-023-01269-1.
The nuclear charge radius plays a vital role in determining the equation of state of isospin asymmetric nuclear matter. Based on the correlation between the differences in charge radii of mirror-partner nuclei and the slope parameter (,L,) of symmetry energy at the nuclear saturation density, an analysis of the calibrated slope parameter ,L, was performed in finite nuclei. In this study, relativistic and non-relativistic energy density functionals were employed to constrain the nuclear symmetry energy through the available databases of the mirror-pair nuclei ,36,Ca-,36,S,38,Ca-,38,Ar, and ,54,Ni-,54,Fe. The deduced nuclear symmetry energy was located in the range 29.89–31.85 MeV, and ,L, of the symmetry energy essentially covered the range 22.50–51.55 MeV at the saturation density. Moreover, the extracted ,L,s, at the sensitivity density ,, was located in the interval range 30.52–39.76 MeV.
Symmetry energyCharge radiiMirror nuclei
A. W. Steiner, M. Prakash, J. M. Lattimer, et al., Isospin asymmetry in nuclei and neutron stars. Phys. Rept. 411, 325 (2005). https://www.sciencedirect.com/science/article/pii/S0370157305001043https://www.sciencedirect.com/science/article/pii/S0370157305001043doi: 10.1016/j.physrep.2005.02.004http://doi.org/10.1016/j.physrep.2005.02.004
B.-A. Li, L.-W. Chen, and C. M. Ko, Recent progress and new challenges in isospin physics with heavy ion reactions. Phys. Rept. 464, 113 (2008). https://www.sciencedirect.com/science/article/pii/S0370157308001269https://www.sciencedirect.com/science/article/pii/S0370157308001269doi: 10.1016/j.physrep.2008.04.005http://doi.org/10.1016/j.physrep.2008.04.005
F. Ji, J. N. Hu, S. S. Bao, et al., Effects of nuclear symmetry energy and equation of state on neutron star properties. Phys. Rev. C 100, 045801 (2019). doi: 10.1103/PhysRevC.100.045801http://doi.org/10.1103/PhysRevC.100.045801
Z. Qian, R. Y. Xin and B. Y. Sun, Moments of inertia of neutron stars in relativistic mean field theory: The role of the isovector scalar channel. Sci. China-Phys. Mech. Astron. 61, 082011 (2018). doi: 10.1007/s11433-018-9182-3http://doi.org/10.1007/s11433-018-9182-3
J. F. Xu, C. J. Xia, Z. Y. Lu, et al., Symmetry energy of strange quark matter and tidal deformability of strange quark stars. Nucl. Sci. Tech. 33, 143 (2022). doi: 10.1007/s41365-022-01130-xhttp://doi.org/10.1007/s41365-022-01130-x
J. M. Lattimer and M. Prakash, Neutron star observations: Prognosis for equation of state constraints. Phys. Rept. 442, 109 (2007). https://www.sciencedirect.com/science/article/pii/S0370157307000452https://www.sciencedirect.com/science/article/pii/S0370157307000452doi: 10.1016/j.physrep.2007.02.003http://doi.org/10.1016/j.physrep.2007.02.003
M. Baldo and G. Burgio, The nuclear symmetry energy. Prog. Part. Nucl. Phys. 91, 203 (2016). https://www.sciencedirect.com/science/article/pii/S0146641016300254https://www.sciencedirect.com/science/article/pii/S0146641016300254doi: 10.1016/j.ppnp.2016.06.006http://doi.org/10.1016/j.ppnp.2016.06.006
X. Roca-Maza and N. Paar, Nuclear equation of state from ground and collective excited state properties of nuclei. Prog. Part. Nucl. Phys. 101, 96 (2018). https://www.sciencedirect.com/science/article/pii/S0146641018300334https://www.sciencedirect.com/science/article/pii/S0146641018300334doi: 10.1016/j.ppnp.2018.04.001http://doi.org/10.1016/j.ppnp.2018.04.001
M. B. Tsang, J. R. Stone, F. Camera et al., Constraints on the symmetry energy and neutron skins from experiments and theory. Phys. Rev. C 86, 015803 (2012). doi: 10.1103/PhysRevC.86.015803http://doi.org/10.1103/PhysRevC.86.015803
M. Centelles, X. Roca-Maza, X. viñas et al., Nuclear symmetry energy probed by neutron skin thickness of nuclei. Phys. Rev. Lett. 102, 122502 (2009). doi: 10.1103/PhysRevLett.102.122502http://doi.org/10.1103/PhysRevLett.102.122502
P.-G. Reinhard and W. Nazarewicz, Information Content of a New Observed: The Case of the Nuclear Neutron Skin. Phys. Rev. C 81, 051303(R) (2010). doi: 10.1103/PhysRevC.81.051303http://doi.org/10.1103/PhysRevC.81.051303
Z. Zhang and L.-W. Chen, Constraining symmetry energy at subsaturation densities using isotope binding energy difference and neutron skin thickness. Phys. Lett. B 726, 234 (2013). https://www.sciencedirect.com/science/article/pii/S037026931300628Xhttps://www.sciencedirect.com/science/article/pii/S037026931300628Xdoi: 10.1016/j.physletb.2013.08.002http://doi.org/10.1016/j.physletb.2013.08.002
C. Mondal, B. K. Agrawal, M. Centelles, et al., Model dependence of the neutron-skin thickness on the symmetry energy. Phys. Rev. C 93, 064303 (2016). doi: 10.1103/PhysRevC.93.064303http://doi.org/10.1103/PhysRevC.93.064303
M. Liu, Z.-X. Li, N. Wang, et al., Exploring nuclear symmetry energy with isospin dependence on neutron skin thickness of nuclei. Chin. Phys. C 35, 629 (2011). doi: 10.1088/1674-1137/35/7/006http://doi.org/10.1088/1674-1137/35/7/006
X.-H. Fan, J.-M. Dong, W. Zuo, Symmetry energy at subsaturation densities and neutron skin thickness of 208Pb. Sci. China-Phys. Mech. Astron. 58, 062002 (2015). doi: 10.1007/s11433-015-5673-8http://doi.org/10.1007/s11433-015-5673-8
C. Xu, Z.-Z. Ren and J. Liu, Attempt to link the neutron skin thickness of 208Pb with the symmetry energy through cluster radioactivity. Phys. Rev. C 90, 064310 (2014). doi: 10.1103/PhysRevC.90.064310http://doi.org/10.1103/PhysRevC.90.064310
J. Xu, W.-J. Xie and B.-A. Li, Bayesian inference of nuclear symmetry energy from measured and imagined neutron skin thicknesses in 116,118,120,122,124,130,132 Sn, 208 Pb, and 48Ca. Phys. Rev. C 102, 044316 (2020). doi: 10.1103/PhysRevC.102.044316http://doi.org/10.1103/PhysRevC.102.044316
D. Adhikari, H. Albataineh, D. Androic, et al. (PREX Collaboration), Accurate determination of the neutron skin thickness of 208Pb through parity-violation in electron scattering. Phys. Rev. Lett. 126, 172502 (2021). doi: 10.1103/PhysRevLett.126.172502http://doi.org/10.1103/PhysRevLett.126.172502
B.T. Reed, F.J. Fattoyev, C.J. Horowitz et al., Implications of PREX-2 on the equation of state of neutron-rich matter. Phys. Rev. Lett. 126, 172503 (2021). doi: 10.1103/PhysRevLett.126.172503http://doi.org/10.1103/PhysRevLett.126.172503
P. Danielewicz, Surface symmetry energy. Nucl. Phys. A 727, 233 (2003). https://www.sciencedirect.com/science/article/pii/S0375947403016622https://www.sciencedirect.com/science/article/pii/S0375947403016622doi: 10.1016/j.nuclphysa.2003.08.001http://doi.org/10.1016/j.nuclphysa.2003.08.001
M. Liu, N. Wang, Z.-X. Li et al., Nuclear symmetry energy at subnormal densities from measured nuclear masses. Phys. Rev. C 82, 064306 (2010). doi: 10.1103/PhysRevC.82.064306http://doi.org/10.1103/PhysRevC.82.064306
B. A. Brown, Constraints on the Skyrme equations of state from properties of doubly magic nuclei. Phys. Rev. Lett. 111, 232502 (2013). doi: 10.1103/PhysRevLett.111.232502http://doi.org/10.1103/PhysRevLett.111.232502
N. Wan, C. Xu and Z.-Z. Ren, Density slope of symmetry energy constrained by proton radioactivity. Phys. Rev. C 94. 044322 (2016). doi: 10.1103/PhysRevC.94.044322http://doi.org/10.1103/PhysRevC.94.044322
P. Danielewicz and J. Lee, Symmetry energy II: Isobaric analog states. Nucl. Phys. A 922, 1 (2014). https://www.sciencedirect.com/science/article/pii/S0375947413007872https://www.sciencedirect.com/science/article/pii/S0375947413007872doi: 10.1016/j.nuclphysa.2013.11.005http://doi.org/10.1016/j.nuclphysa.2013.11.005
A. Carbone, G. Colò, A. Bracco et al., Constraints on the symmetry energy and neutron skins from pygmy resonances in 68Ni and 132Sn. Phys. Rev. C 81, 041301 (2010). doi: 10.1103/PhysRevC.81.041301http://doi.org/10.1103/PhysRevC.81.041301
Z. Zhang and L.-W. Chen, Constraining the density slope of the nuclear symmetry energy at subsaturation densities using the electric dipole polarizability in 208Pb. Phys. Rev. C 90, 064317 (2014). doi: 10.1103/PhysRevC.90.064317http://doi.org/10.1103/PhysRevC.90.064317
L.-G. Cao and Z.-Y. Ma, Symmetric energy and isovector giant dipole resonance in finite nuclei. Chin. Phys. Lett. 25, 1625 (2008). doi: 10.1088/0256-307X/25/5/028http://doi.org/10.1088/0256-307X/25/5/028
X. Roca-Maza, M. Brenna, B. K. Agrawal, et al., Giant quadrupole resonances in 208Pb, the nuclear symmetry energy, and the neutron skin thickness. Phys. Rev. C 87, 034301 (2013). doi: 10.1103/PhysRevC.87.034301http://doi.org/10.1103/PhysRevC.87.034301
L.-G. Cao, X. Roca-Maza, G. Colò, et al., Constraints on the neutron skin and symmetry energy from the anti-analog giant dipole resonance in 208Pb. Phys. Rev. C 92, 034308 (2015). doi: 10.1103/PhysRevC.92.034308http://doi.org/10.1103/PhysRevC.92.034308
X. Roca-Maza, L.-G. Cao, G. Col‘o et al., Fully self-consistent study of charge-exchange resonances and their impact on symmetry energy parameters. Phys. Rev. C 94, 044313 (2016). doi: 10.1103/PhysRevC.94.044313http://doi.org/10.1103/PhysRevC.94.044313
A. Krasznahorkay, N. Paar, D. Vretenar et al., Anti-analog giant dipole resonances and the neutron skin of nuclei. Phys. Lett. B 720, 428 (2013). https://www.sciencedirect.com/science/article/pii/S037026931300186Xhttps://www.sciencedirect.com/science/article/pii/S037026931300186Xdoi: 10.1016/j.physletb.2013.02.043http://doi.org/10.1016/j.physletb.2013.02.043
S.-H. Cheng, J. Wen, L.-G. Cao et al., Neutron skin thickness of 90Zr and symmetry energy constrained by charge exchange spin-dipole excitations. Chin. Phys. C 47, 024102 (2023). doi: 10.1088/1674-1137/aca38ehttp://doi.org/10.1088/1674-1137/aca38e
M. Colonna, V. Baran, M. Di Toro, Theoretical predictions of experimental observables sensitive to the symmetry energy. Eur. Phys. J. A 50, 30 (2014). doi: 10.1140/epja/i2014-14030-1http://doi.org/10.1140/epja/i2014-14030-1
M. Colonna, Fluctuations and symmetry energy in nuclear fragmentation dynamics. Phys. Rev. Lett. 110, 042701 (2013). doi: 10.1103/PhysRevLett.110.042701http://doi.org/10.1103/PhysRevLett.110.042701
G.-F. Wei, X. Huang, Q.-J. Zhi et al., Effects of momentum dependence of nuclear symmetry potential on pion observables in Sn + Sn collisions at 270 MeV/nucleon. Nucl. Sci. Tech. 33, 163 (2022). doi: 10.1007/s41365-022-01146-3http://doi.org/10.1007/s41365-022-01146-3
Y.J. Wang, C.C. Guo, Q.F. Li et al., The effect of symmetry potential on the balance energy of light particles emitted from mass symmetric heavy-ion collisions with isotopes, isobars and isotones. Sci. China-Phys. Mech. Astron. 55, 2407-2413 (2012). doi: 10.1007/s11433-012-4922-3http://doi.org/10.1007/s11433-012-4922-3
A. Ono, J. Xu, M. Colonna et al., Comparison of heavy-ion transport simulations: Collision integral with pions and resonances in a box. Phys. Rev. C 100, 044617 (2019). doi: 10.1103/PhysRevC.100.044617http://doi.org/10.1103/PhysRevC.100.044617
G. Jhang, J. Estee, J. Barney et al., Symmetry energy investigation with pion production from Sn+Sn systems. Phys. Lett. B 813, 136016 (2021). https://www.sciencedirect.com/science/article/pii/S0370269320308194https://www.sciencedirect.com/science/article/pii/S0370269320308194doi: 10.1016/j.physletb.2020.136016http://doi.org/10.1016/j.physletb.2020.136016
J. Estee, W.G. Lynch, C.Y. Tsang et al., (S RIT Collaboration), Probing the symmetry energy with the spectral pion ratio. Phys. Rev. Lett. 126, 162701 (2021). doi: 10.1103/PhysRevLett.126.162701http://doi.org/10.1103/PhysRevLett.126.162701
M. B. Tsang, Y. Zhang, P. Danielewicz, et al., Constraints on the density dependence of the symmetry energy. Phys. Rev. Lett. 102, 122701 (2009). doi: 10.1103/PhysRevLett.102.122701http://doi.org/10.1103/PhysRevLett.102.122701
Z.-Q. Feng and G.-M. Jin, Probing high-density behavior of symmetry energy from pion emission in heavy-ion collisions. Phys. Lett. B 683, 140 (2010). https://www.sciencedirect.com/science/article/pii/S0370269309014282https://www.sciencedirect.com/science/article/pii/S0370269309014282doi: 10.1016/j.physletb.2009.12.006http://doi.org/10.1016/j.physletb.2009.12.006
M. A. Famiano, T. Liu, W. G. Lynch, et al., Neutron and proton transverse emission ratio measurements and the density dependence of the asymmetry term of the nuclear equation of state. Phys. Rev. Lett. 97, 052701 (2006). doi: 10.1103/PhysRevLett.97.052701http://doi.org/10.1103/PhysRevLett.97.052701
W.-J. Xie, J. Su, L. Zhu, et al., Symmetry energy and pion production in the Boltzmann-Langevin approach. Phys. Lett. B 718, 1510 (2013). https://www.sciencedirect.com/science/article/pii/S0370269312012609https://www.sciencedirect.com/science/article/pii/S0370269312012609doi: 10.1016/j.physletb.2012.12.021http://doi.org/10.1016/j.physletb.2012.12.021
W.-J. Xie and F.-S. Zhang, Nuclear collective flows as a probe for neutron-proton effective mass splitting. Phys. Lett. B 735, 250 (2014). https://www.sciencedirect.com/science/article/pii/S0370269314004559https://www.sciencedirect.com/science/article/pii/S0370269314004559doi: 10.1016/j.physletb.2014.06.050http://doi.org/10.1016/j.physletb.2014.06.050
H. Yu, D.-Q. Fang, Y.-G Ma, Investigation of the symmetry energy of nuclear matter using isospin-dependent quantum molecular dynamics. Nucl. Sci. Tech. 31, 61 (2020). doi: 10.1007/s41365-020-00766-xhttp://doi.org/10.1007/s41365-020-00766-x
W.D. Tian, Y.-G Ma, X.Z. Cai, et al., Isospin and symmetry energy study in nuclear EOS. Sci. China-Phys. Mech. Astron. 54, 141-148 (2011). doi: 10.1007/s11433-011-4424-8http://doi.org/10.1007/s11433-011-4424-8
M. Colonna, Y.-X. Zhang, Y.-J. Wang et al., Comparison of heavy-ion transport simulations: mean-field dynamics in a box. Phys. Rev. C 104, 024603 (2021). doi: 10.1103/PhysRevC.104.024603http://doi.org/10.1103/PhysRevC.104.024603
M. C. Miller, F.K. Lamb, A.J. Dittmann et al., PSR J0030+0451 mass and radius from NICER data and implications for the properties of neutron star matter. Astrophys. J. 887, L24 (2019). doi: 10.3847/2041-8213/ab50c5http://doi.org/10.3847/2041-8213/ab50c5
G. Raaijmakers, S. K. Greif, K. Hebeler, et al., Constraints on the dense matter equation of state and neutron star properties from NICER’s mass–radius estimate of PSR J0740+6620 and multimessenger observations. Astrophys. J. Lett. 918, L29 (2021). doi: 10.3847/2041-8213/ac089ahttp://doi.org/10.3847/2041-8213/ac089a
C. A. Raithel and F. Özel, Measurement of the nuclear symmetry energy parameters from gravitational-wave events. Astrophys. J. 885, 121 (2019). doi: 10.3847/1538-4357/ab48e6http://doi.org/10.3847/1538-4357/ab48e6
N. Wang and T. Li, Shell and isospin effects in nuclear charge radii. Phys. Rev. C 88, 011301(R) (2013). doi: 10.1103/PhysRevC.88.011301http://doi.org/10.1103/PhysRevC.88.011301
B.A. Brown, Mirror charge radii and the neutron equation of state. Phys. Rev. Lett. 119, 122502 (2017). doi: 10.1103/PhysRevLett.119.122502http://doi.org/10.1103/PhysRevLett.119.122502
B.A. Brown, K. Minamisono, J. Piekarewicz et al., Implications of the 36Ca-36S and 38Ca-38Ar difference in mirror charge radii on the neutron matter equation of state. Phys. Rev. Research 2, 022035 (2020). doi: 10.1103/PhysRevResearch.2.022035http://doi.org/10.1103/PhysRevResearch.2.022035
S.V. Pineda, K. König, D.M. Rossi et al., Charge radius of neutron-deficient 54Ni and symmetry energy constraints using the difference in mirror pair charge radii. Phys. Rev. Lett. 127, 182503 (2021). doi: 10.1103/PhysRevLett.127.182503http://doi.org/10.1103/PhysRevLett.127.182503
A. J. Miller, K. Minamisono, A. Klose et al., Proton superfluidity and charge radii in proton-rich calcium isotopes. Nature Phys. 15, 432 (2019). doi: 10.1038/s41567-019-0416-9http://doi.org/10.1038/s41567-019-0416-9
J. Xu, Z. Zhang, B.-A. Li, Uncertainty quantification for nuclear matter incompressibility. Phys. Rev. C 104, 054324 (2021) doi: 10.1103/PhysRevC.104.054324http://doi.org/10.1103/PhysRevC.104.054324
M. Bender, P.-H. Heenen, P.-G. Reinhard, Self-consistent mean-field models for nuclear structure. Rev. Mod. Phys. 75, 121 (2003). doi: 10.1103/RevModPhys.75.121http://doi.org/10.1103/RevModPhys.75.121
D. Vretenar, A. Afanasjev, G. Lalazissis et al., Relativistic Hartree-Bogoliubov theory: static and dynamic aspects of exotic nuclear structure. Phys. Rept. 409, 101 (2005). https://www.sciencedirect.com/science/article/pii/S0370157304004545https://www.sciencedirect.com/science/article/pii/S0370157304004545doi: 10.1016/j.physrep.2004.10.001http://doi.org/10.1016/j.physrep.2004.10.001
H. Liang, J. Meng, S.-G. Zhou, Hidden pseudospin and spin symmetries and their origins in atomic nuclei. Phys. Rept. 570, 1 (2015). https://www.sciencedirect.com/science/article/pii/S0370157315000502https://www.sciencedirect.com/science/article/pii/S0370157315000502doi: 10.1016/j.physrep.2014.12.005http://doi.org/10.1016/j.physrep.2014.12.005
E. Chabanat, P. Bonche, P. Haensel et al., A Skyrme parametrization from subnuclear to neutron star densities. Nucl. Phys. A 627, 710 (1997). https://www.sciencedirect.com/science/article/pii/S0375947497005964https://www.sciencedirect.com/science/article/pii/S0375947497005964doi: 10.1016/S0375-9474(97)00596-4http://doi.org/10.1016/S0375-9474(97)00596-4
E. Chabanat, P. Bonche, P. Haensel et al., A Skyrme parametrization from subnuclear to neutron star densities Part II. Nuclei far from stabilities. Nucl. Phys. A 635, 231 (1998). https://www.sciencedirect.com/science/article/pii/S0375947498001808https://www.sciencedirect.com/science/article/pii/S0375947498001808doi: 10.1016/S0375-9474(98)00180-8http://doi.org/10.1016/S0375-9474(98)00180-8
C. J. Horowitz and J. Piekarewicz, Neutron star structure and the neutron radius of 208Pb. Phys. Rev. Lett. 86, 5647 (2001). doi: 10.1103/PhysRevLett.86.5647http://doi.org/10.1103/PhysRevLett.86.5647
C.J. Horowitz and J. Piekarewicz, Neutron radii of 208Pb and neutron stars. Phys. Rev. C 64, 062802(R) (2001). doi: 10.1103/PhysRevC.64.062802http://doi.org/10.1103/PhysRevC.64.062802
G. Colò, (private communication).
J. Piekarewicz, Pygmy resonances and neutron skins. Phys. Rev. C 83, 034319 (2011). doi: 10.1103/PhysRevC.83.034319http://doi.org/10.1103/PhysRevC.83.034319
G. Colò, N. Van Giai, J. Meyer et al., Microscopic determination of the nuclear incompressibility within the nonrelativistic framework. Phys. Rev. C 70, 024307 (2004). doi: 10.1103/PhysRevC.70.024307http://doi.org/10.1103/PhysRevC.70.024307
D. Adhikari, H. Albataineh, D. Androic et al., Electric dipole polarizability of 48Ca and implications for the neutron skin. Phys. Rev. Lett. 118, 252501 (2017). doi: 10.1103/PhysRevLett.118.252501http://doi.org/10.1103/PhysRevLett.118.252501
J. Birkhan, M. Miorelli, S. Bacca, et al. (CREX Collaboration), Precision determination of the neutral weak form factor of 48Ca. Phys. Rev. Lett. 129, 042501 (2022). doi: 10.1103/PhysRevLett.129.042501http://doi.org/10.1103/PhysRevLett.129.042501
M. K. Gaidarov, I. Moumene, A. N. Antonov et al., Proton and neutron skins and symmetry energy of mirror nuclei. Nucl. Phys. A 1004, 122061 (2020). https://www.sciencedirect.com/science/article/pii/S0375947420303717https://www.sciencedirect.com/science/article/pii/S0375947420303717doi: 10.1016/j.nuclphysa.2020.122061http://doi.org/10.1016/j.nuclphysa.2020.122061
F. Sammarruca, Proton skins, neutron skins, and proton radii of mirror nuclei. Front. Phys. 6, 90 (2018). https://www.frontiersin.org/articles/10.3389/fphy.2018.00090/fullhttps://www.frontiersin.org/articles/10.3389/fphy.2018.00090/fulldoi: 10.3389/fphy.2018.00090http://doi.org/10.3389/fphy.2018.00090
L.-W. Chen, C.M. Co, B.-A. Li et al., Density slope of nuclear symmetry energy from neutron skin thickness of heavy nuclei. Phys. Rev. C 82, 024321 (2010). doi: 10.1103/PhysRevC.82.024321http://doi.org/10.1103/PhysRevC.82.024321
S. Tagami, T. Wakasa and M. Yahiro, Slope parameters determined from CREX and PREX2. Results in Physics 43, 106037 (2022). https://www.sciencedirect.com/science/article/pii/S2211379722006519https://www.sciencedirect.com/science/article/pii/S2211379722006519doi: 10.1016/j.rinp.2022.106037http://doi.org/10.1016/j.rinp.2022.106037
Y.-Y. Liu, Y.-J. Wang, Y. Cui et al., Insights into the pion production mechanism and symmetry energy at high density. Phys. Rev. C 103, 014616 (2021). doi: 10.1103/PhysRevC.103.014616http://doi.org/10.1103/PhysRevC.103.014616
Y.-X. Zhang, M. Liu, C.-J. Xia et al., Constraints on symmetry energy and its associated parameters from nuclei to neutron stars. Phys. Rev. C 101, 034303 (2020). doi: 10.1103/PhysRevC.101.034303http://doi.org/10.1103/PhysRevC.101.034303
A. W. Steiner and S. Gandolfi, Connecting neutron star observations to three-body forces in neutron matter and to the nuclear symmetry energy. Phys. Rev. Lett. 108, 081102 (2012). doi: 10.1103/PhysRevLett.108.081102http://doi.org/10.1103/PhysRevLett.108.081102
T. Malik, B. K. Agrawal, C. Providência et al., Unveiling the correlations of tidal deformability with the nuclear symmetry energy parameters. Phys. Rev. C 102, 052801 (2020). doi: 10.1103/PhysRevC.102.052801http://doi.org/10.1103/PhysRevC.102.052801
X.-X. Dong, R. An, J.-X. Lu et al., Nuclear charge radii in Bayesian neural networks revisited. Phys. Lett. B 838, 137726 (2023). doi: 10.1016/j.physletb.2023.137726http://doi.org/10.1016/j.physletb.2023.137726
X.-X. Dong, R. An, J.-X. Lu, et al., Novel Bayesian neural network-based approach for nuclear charge radii. Phys. Rev. C 105, 014308 (2022). doi: 10.1103/PhysRevC.105.014308http://doi.org/10.1103/PhysRevC.105.014308
W.-J. Xie and B.-A. Li, Bayesian inference of high-density nuclear symmetry energy from the radii of canonical neutron stars. Astrophys. J. 883, 174 (2019). doi: 10.3847/1538-4357/ab3f37http://doi.org/10.3847/1538-4357/ab3f37
W. G. Newton and G. Crocombe, Nuclear symmetry energy from neutron skins and pure neutron matter in a Bayesian framework. Phys. Rev. C 103, 064323 (2021). doi: 10.1103/PhysRevC.103.064323http://doi.org/10.1103/PhysRevC.103.064323
X.-H, Fan, J.-M. Dong, W. Zuo, Density-dependent symmetry energy at subsaturation densities from nuclear mass differences. Phys. Rev. C 89, 017305 (2014). doi: 10.1103/PhysRevC.89.017305http://doi.org/10.1103/PhysRevC.89.017305
S. Kumar, Y.G. Ma, G. Q. zhang, et al., Probing the density dependence of the symmetry energy via multifragmentation at subsaturation densities. Phys. Rev. C 84, 044620 (2011). doi: 10.1103/PhysRevC.84.044620http://doi.org/10.1103/PhysRevC.84.044620
R. An, S.-S Zhang, L.-S Geng et al., Charge radii of potassium isotopes in the RMF (BCS)* approach. Chin. Phys. C 46, 054101(2022). doi: 10.1088/1674-1137/ac4b5chttp://doi.org/10.1088/1674-1137/ac4b5c
R. An, X. Jiang, L.-G. Cao et al., Odd-even staggering and shell effects of charge radii for nuclei with even Z from 36 to 38 and from 52 to 62. Phys. Rev. C 105, 014325 (2022). doi: 10.1103/PhysRevC.105.014325http://doi.org/10.1103/PhysRevC.105.014325
P.-G. Reinhard, W. Nazarewicz, R.F. Garcia Ruiz, Beyond the charge radius: The information content of the fourth radial moment. Phys. Rev. C 101, 021301 (2020). doi: 10.1103/PhysRevC.101.021301http://doi.org/10.1103/PhysRevC.101.021301
P.-G. Reinhard and W. Nazarewicz, Nuclear charge densities in spherical and deformed nuclei: Toward precise calculations of charge radii. Phys. Rev. C 103, 054310 (2021). doi: 10.1103/PhysRevC.103.054310http://doi.org/10.1103/PhysRevC.103.054310
R. An, L.-S. Geng, and S.-S. Zhang, Novel ansatz for charge radii in density functional theory Phys. Rev. C 102, 024307 (2020). doi: 10.1103/PhysRevC.102.024307http://doi.org/10.1103/PhysRevC.102.024307
P.-G. Reinhard and W. Nazarewicz. Information content of the differences in the charge radii of mirror nuclei. Phys. Rev. C 105, L021301 (2022). doi: 10.1103/PhysRevC.105.L021301http://doi.org/10.1103/PhysRevC.105.L021301
R. An, L.-S. Geng, S.-S. Zhang et al., Particle number conserving BCS approach in the relativistic mean field model and its application to 32-74Ca. Chin. Phys. C 42, 114101 (2018). doi: 10.1088/1674-1137/42/11/114101http://doi.org/10.1088/1674-1137/42/11/114101
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution