1.Department of Engineering Physics, Tsinghua University, Beijing 100084, China
2.Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084, China
* xiaoysh@mail.tsinghua.edu.cn
Scan for full text
Ming-Hao Dong, Zhi-Yang Yao, Yong-Shun Xiao. Development and preliminary results of a large-pixel two-layer LaBr3 Compton camera prototype. [J]. Nuclear Science and Techniques 34(8):121(2023)
Ming-Hao Dong, Zhi-Yang Yao, Yong-Shun Xiao. Development and preliminary results of a large-pixel two-layer LaBr3 Compton camera prototype. [J]. Nuclear Science and Techniques 34(8):121(2023) DOI: 10.1007/s41365-023-01273-5.
Lanthanum bromide (LaBr,3,) crystal has a high energy resolution and time resolution and has been used in Compton cameras (CCs) over the past few decades. However, LaBr,3, crystal arrays are difficult to process because LaBr,3, is easy to crack and break; thus, few LaBr,3,-based CC prototypes have been built. In this study, we designed and fabricated a large-pixel LaBr,3, CC prototype and evaluated its performance with regard to position, energy, and angular resolution. We used two 10 × 10 LaBr,3, crystal arrays with a pixel size of 5 mm × 5 mm, silicon photomultipliers (SiPMs), and corresponding decoding circuits to construct our prototype. Additionally, a framework based on a Voronoi diagram and a lookup table was developed for list-mode projection data acquisition. Monte Carlo (MC) simulations based on Geant4 and experiments were conducted to evaluate the performance of our CC prototype. The lateral position resolution was 5 mm, and the maximum deviation in the depth direction was 2.5 and 5 mm for the scatterer and absorber, respectively. The corresponding measured energy resolutions were 7.65% and 8.44%, respectively, at 511 keV. The experimental results of ,137,Cs point-like sources were consistent with the MC simulation results with regard to the spatial positions and full widths at half maximum (FWHMs). The angular resolution of the fabricated prototype was approximately 6° when a point-like ,137,Cs source was centrally placed at a distance of 5 cm from the scatterer. We proposed and investigated a large-pixel LaBr,3, CC for the first time and verified its feasibility for use in accurate spatial positioning of radiative sources with a high angular resolution. The proposed CC can satisfy the requirements of radiative source imaging and positioning in the nuclear industry and medical applications.
Compton cameraLarge pixelGamma cameraLaBr3 detectorPrototype evaluation
R. W. Todd, J. M. Nightingale, D. B. Everett, A Proposed γ Camera. Nature 251, 132-34 (1974).
Y. Kim, J. H. Kim, H. S. Lee et al., Development of Compton Imaging System for Nuclear Material Monitoring at Pyroprocessing Test-Bed Facility. J. Nucl. Sci. Technol. 53(12), 2040-48 (2016). doi: 10.1080/00223131.2016.1199333http://doi.org/10.1080/00223131.2016.1199333.
Z. Yao, Y. Yuan, J. Wu et al., Rapid Compton Camera Imaging for Source Terms Investigation in the Nuclear Decommissioning with a Subset-Driven Origin Ensemble Algorithm. Radiat. Phys. Chem. 197, 110133 (2022). doi: 10.1016/j.radphyschem.2022.110133http://doi.org/10.1016/j.radphyschem.2022.110133.
J. Zhang, X. Liang, J. Cai et al., Prototype of an Array SiPM-Based Scintillator Compton Camera for Radioactive Materials Detection. Radiat. Detect. Techno. 3(3), 17 (2019). doi: 10.1007/s41605-019-0095-1http://doi.org/10.1007/s41605-019-0095-1.
F. Tian, C. Geng, Z. Yao et al., Radiopharmaceutical Imaging Based on 3D-CZT Compton Camera with 3D-Printed Mouse Phantom. Phys. Medica. 96, 140-48 (2022).. doi: 10.1016/j.ejmp.2022.03.005http://doi.org/10.1016/j.ejmp.2022.03.005.
R. Wu, C. Geng, F. Tian et al., GPU-Accelerated Three-Dimensional Reconstruction Method of the Compton Camera and Its Application in Radionuclide Imaging. Nucl. Sci. Tech. 34(4), 52 (2023). doi: 10.1007/s41365-023-01199-yhttp://doi.org/10.1007/s41365-023-01199-y.
Z. Yao, Y. Xiao, B. Wang et al., Study of 3D Fast Compton Camera Image Reconstruction Method by Algebraic Spatial Sampling. Nucl. Instrum. Meth. A. 954, 161345 (2018). doi: 10.1016/j.nima.2018.10.023http://doi.org/10.1016/j.nima.2018.10.023.
Z. Yao, C Shi, F Tian et al., Technical Note: Rapid and High-Resolution Deep Learning-Based Radiopharmaceutical Imaging with 3D-CZT Compton Camera and Sparse Projection Data. Med. Phys. 49(11), 7336-46(2022). doi: 10.1002/mp.15898http://doi.org/10.1002/mp.15898.
M. Jan, I. Hsiao, H. Huang, Use of a LYSO-Based Compton Camera for Prompt Gamma Range Verification in Proton Therapy. Med. Phys. 44(12), 6261-69(2017). doi: 10.1002/mp.12626http://doi.org/10.1002/mp.12626.
Z. Yao, Y. Xiao, Z. Chen et al., Compton-Based Prompt Gamma Imaging Using Ordered Origin Ensemble Algorithm with Resolution Recovery in Proton Therapy. Sci. Rep-uk. 9(1), 1133 (2019). doi: 10.1038/s41598-018-37623-2http://doi.org/10.1038/s41598-018-37623-2.
Z. Yao, Y. Xiao, J. Zhao, Dose Reconstruction with Compton Camera during Proton Therapy via Subset-Driven Origin Ensemble and Double Evolutionary Algorithm. Nucl. Sci. Tech. 34(4), 59 (2023). doi: 10.1007/s41365-023-01207-1http://doi.org/10.1007/s41365-023-01207-1.
I. Kuvvetli, C. Budtz-Jørgensen, A. Zappettini et al., A 3D CZT high resolution detector for x- and gamma-ray astronomy. Proc. SPIE. 9154, 91540X (2014); doi: 10.1117/12.2055119http://doi.org/10.1117/12.2055119.
V.L. Ljubenov, P.M. Marinkovic. Applicability of Compton Imaging in Nuclear Decommissioning Activities. Paper presented at the International Yugoslav Nuclear Society Conference, Belgrade, Oct 2003.
T. Taya, J. Kataoka, A. Kishimoto et al., First Demonstration of Real-Time Gamma Imaging by Using a Handheld Compton Camera for Particle Therapy. Nucl. Instr. Meth. A. 831, 355-361(2016). doi: 10.1016/j.nima.2016.04.028http://doi.org/10.1016/j.nima.2016.04.028.
E. Muñoz, J. Barrio, A. Etxebeste et al., Performance Evaluation of MACACO: A Multilayer Compton Camera. Phys. Med. Biol. 62(18), 7321 (2017). doi: 10.1088/1361-6560/aa8070http://doi.org/10.1088/1361-6560/aa8070.
C.Z. Uche, W.H. Round, and M.J. Cree. Evaluation of Two Compton Camera Models for Scintimammography. Nucl. Instrum. Meth. A. 662(1), 55-60(2012). doi: 10.1016/j.nima.2011.09.058http://doi.org/10.1016/j.nima.2011.09.058.
Z. Yao, Y. Xiao, M. Dong et al., Development of a Two-Layer Dense-Pixel LYSO Compton Camera Prototype for Prompt Gamma Imaging. Phys. Med. Biol. 68, 045008(2023). doi: 10.1088/1361-6560/acb4d8http://doi.org/10.1088/1361-6560/acb4d8.
M. Uenomachi, Y. Mizumachi, Y. Yoshihara et al., Double Photon Emission Coincidence Imaging with GAGG-SiPM Compton Camera. Nucl. Instrum. Meth. A. 954, 161682(2020). doi: 10.1016/j.nima.2018.11.141http://doi.org/10.1016/j.nima.2018.11.141.
Y. Shikaze, Y. Nishizawa, Y. Sanada et al., Field Test around Fukushima Daiichi Nuclear Power Plant Site Using Improved Ce:Gd3(Al,Ga)5O12 Scintillator Compton Camera Mounted on an Unmanned Helicopter. J. Nucl. Sci. Technol. 53(12), 1907-18 (2016). doi: 10.1080/00223131.2016.1185980http://doi.org/10.1080/00223131.2016.1185980.
D. Y. Domínguez-Jiménez and H. Alva-Sánchez. Energy Spectra Due to the Intrinsic Radiation of LYSO/LSO Scintillators for a Wide Range of Crystal Sizes. Med. Phys. 48(1), 1596-1607 (2021). doi: 10.1002/mp.14729http://doi.org/10.1002/mp.14729.
S. Liprandi, M. Mayerhofer, S. Aldawood et al., Sub-3mm Spatial Resolution from a Large Monolithic LaBr3 (Ce) Scintillator. Curr. Dir. Biomed 3(2), 655-59 (2017). doi: 10.1515/cdbme-2017-0138http://doi.org/10.1515/cdbme-2017-0138.
W. Lu, L. Wang, Y. Yuan et al., Monte Carlo Simulation for Performance Evaluation of Detector Model with a Monolithic LaBr3(Ce) Crystal and SiPM Array for γ Radiation Imaging. Nucl. Sci. Tech. 33(8), 107(2022). doi: 10.1007/s41365-022-01081-3http://doi.org/10.1007/s41365-022-01081-3.
H. Cheng, B. Sun, L. Zhu et al., Intrinsic Background Radiation of LaBr3(Ce) Detector via Coincidence Measurements and Simulations. Nucl. Sci. Tech. 31(10), 99(2020). doi: 10.1007/s41365-020-00812-8http://doi.org/10.1007/s41365-020-00812-8.
R. Shi, X., Tuo, H. Li et al., Unfolding Analysis of LaBr3:Ce Gamma Spectrum with a Detector Response Matrix Constructing Algorithm Based on Energy Resolution Calibration. Nucl. Sci. Tech. 29(1), 1(2017). doi: 10.1007/s41365-017-0340-6http://doi.org/10.1007/s41365-017-0340-6.
Z. Yao, Z. Chen, S. He et al., Simulation Study of Interaction Position Correction for Compton Camera Based on Origin Ensembles with Subdivision Grid and Transmission Probability. Paper presented at the IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Manchester, UK, 1-3 2019. doi: 10.1109/NSS/MIC42101.2019.9059666http://doi.org/10.1109/NSS/MIC42101.2019.9059666.
A. Andreyev, A. Celler, I. Ozsahin et al., Resolution Recovery for Compton Camera Using Origin Ensemble Algorithm. Med. Phys. 43(8), 4866-76 (2016). doi: 10.1118/1.4959551http://doi.org/10.1118/1.4959551.
H. O. Anger, Scintillation Camera with Multichannel Collimators. J. Nucl. Med. 5, 515-31(1964).
P. J. Green, R. Sibson, Computing Dirichlet Tessellations in the Plane, Comput. J. 21(2), 168-173 (1978). doi: 10.1093/comjnl/21.2.168http://doi.org/10.1093/comjnl/21.2.168.
A. Sitek. Reconstruction of Emission Tomography Data Using Origin Ensembles. Ieee. T. Med. Imaging. 30, 946-56 (2010). doi: 10.1109/TMI.2010.2098036http://doi.org/10.1109/TMI.2010.2098036.
C.E. Ordonez, W. Chang, A. Bolozdynya. Angular Uncertainties Due to Geometry and Spatial Resolution in Compton Cameras. Ieee. T. Nucl. Sci. 46(4), 1142-47 (1999). doi: 10.1109/23.790848http://doi.org/10.1109/23.790848.
A. Andreyev, A. Sitek, A. Celler. Fast Image Reconstruction for Compton Camera Using Stochastic Origin Ensemble Approach. Med. Phys. 38(1), 429-38 (2011). doi: 10.1118/1.3528170http://doi.org/10.1118/1.3528170.
M.A. Alnaaimi, Dissertation, University College London, 2011.
H. Rohling, M. Priegnitz, S Schoene et al. Requirements for a Compton camera for in vivo range verification of proton therapy. Phys. Med. Biol. 62(7), 2795(2017). doi: 10.1088/1361-6560/aa6068http://doi.org/10.1088/1361-6560/aa6068
B.D. Milbrath, J. McIntyre, R. Runkle et al., Contamination in LaCl3:Ce Scintillators. United States. doi: 10.2172/881704http://doi.org/10.2172/881704.
D.R. Schaart, S. Seifert, R. Vinke et al., LaBr3:Ce and SiPMs for Time-of-Flight PET: Achieving 100 Ps Coincidence Resolving Time. Phys. Med. Biol. 55(7), N179 (2010). doi: 10.1088/0031-9155/55/7/N02http://doi.org/10.1088/0031-9155/55/7/N02.
C. Ordonez, W. Chang, A. Bolozdynya. Angular Uncertainties Due to Geometry and Spatial Resolution in Compton Cameras. Ieee. T. Nucl. Sci. 3, 1142-47(1999). doi: 10.1109/23.790848http://doi.org/10.1109/23.790848.
D. Mackin, J. Polf, S. Peterson et al., The Effects of Doppler Broadening and Detector Resolution on the Performance of Three-Stage Compton Cameras. Med. Phys. 40(1), 012402 (2013). doi: 10.1118/1.4767756http://doi.org/10.1118/1.4767756.
Y. Liu, J. Fu, Y. Li et al., Preliminary Results of a Compton Camera Based on a Single 3D Position-Sensitive CZT Detector. Nucl. Sci. Tech. 29, 145 (2018). doi: 10.1007/s41365-018-0483-0http://doi.org/10.1007/s41365-018-0483-0.
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution