1.School of Physical Science and Technology, Guangxi University, Nanning 530004, China
2.National Institute of Metrology, Beijing 100029, China
† gsm@nim.ac.cn
‡ huangyb@gxu.edu.cn
Scan for full text
Xing Zhou, Xiao-Yu Qie, Si-Ming Guo, et al. Establishment and study of a polarized X-ray radiation facility. [J]. Nuclear Science and Techniques 34(8):120(2023)
Xing Zhou, Xiao-Yu Qie, Si-Ming Guo, et al. Establishment and study of a polarized X-ray radiation facility. [J]. Nuclear Science and Techniques 34(8):120(2023) DOI: 10.1007/s41365-023-01277-1.
With the advancement in X-ray astronomical detection technology, various celestial polarization detection projects have been initiated. To meet the calibration requirements of polarimeters on the ground, a polarized X-ray radiation facility was designed for this study. The design was based on the principle that X-rays incident at 45° on a crystal produce polarized X-rays, and a second crystal was used to measure the polarization of the X-rays produced by the facility after rotation. The effects of different diaphragm sizes on the degree of polarization were compared, and the facility produced X-rays with polarization degrees of up to 99.55±0.96% using LiF200 and LiF220 crystals. This result revealed that the polarization of incident X-rays is one of the factors affecting the diffraction efficiency of crystals. The replacement of different crystals can satisfy the calibration requirements of polarized X-ray detectors with more energy points in the energy range (4–10) keV. In the future, the facility should be placed in a vacuum environment to meet the calibration requirements at lower energies.
Polarized X-raysPolarimetryCalibrationBragg diffraction
P. Soffitta, N. Bucciantini, E. Churazov et al., A polarized view of the hot and violent universe. Exp. Astron. 51(3), 1109-1141 (2021). doi: 10.1007/s10686-021-09722-yhttp://doi.org/10.1007/s10686-021-09722-y
M.C. Weisskopf, G.G. Cohen, H. L. Kestenbaum et al., Measurement of the X-ray polarization of the Crab Nebula. Astrophys. J. 208, L125-L128 (1976). doi: 10.1086/182247http://doi.org/10.1086/182247
Q. Abarr, B. Beheshtipour, M. Beilicke et al., Performance of the X-Calibur Hard X-Ray Polarimetry Mission during its 2018/19 Long-Duration Balloon Flight. Astropart. Phys. 143, 102749 (2022). doi: 10.1016/j.astropartphys.2022.102749http://doi.org/10.1016/j.astropartphys.2022.102749
M. Chauvin, M. Friis, M. Jackson et al., Calibration and performance studies of the balloon-borne hard X-ray polarimeter PoGO+. Nucl. Instrum. Meth. A 859, 125-133 (2017). doi: 10.1016/j.nima.2017.03.027http://doi.org/10.1016/j.nima.2017.03.027
M. Chauvin, H. G. Florén, M. Friis et al., The PoGO+ view on crab off-pulse hard X-ray polarization. Monthly notes of the Royal Astronomical Society: Letters 477(1), L45-L49 (2018). doi: 10.1093/mnrasl/sly027http://doi.org/10.1093/mnrasl/sly027
Q. Abarr, H. Awaki, M.G. Baring et al., XL-Calibur–a second-generation balloon-borne hard X-ray polarimetry mission. Astropart. Phys. 126, 102529 (2021). doi: 10.1016/j.astropartphys.2020.102529.http://doi.org/10.1016/j.astropartphys.2020.102529..
E. Costa, P. Soffitta, R. Bellazzini et al., An efficient photoelectric X-ray polarimeter for the study of black holes and neutron stars. Nature 411, 662-665 (2001). doi: 10.1038/35079508http://doi.org/10.1038/35079508
H. Feng, H. Li, X.Y. Long et al., Re-detection and a possible time variation of soft X-ray polarization from the crab. Nat. Astron. 4(5), 511-516 (2020). doi: 10.1038/s41550-020-1088-1http://doi.org/10.1038/s41550-020-1088-1
F. Xie, A.D. Marco, F.L. Monaca et al., Vela pulsar wind nebula X-rays are polarized near the synchrotron limit. Nature 612, 658-660 (2022). doi: 10.1038/s41586-022-05476-5http://doi.org/10.1038/s41586-022-05476-5
V. Doroshenko, J. Poutanen, S.S. Tsygankov et al., Determination of X-ray pulsar geometry with IXPE polarimetry. Nat. Astron. 6, 1433-1443 (2022). doi: 10.1038/s41550-022-01799-5http://doi.org/10.1038/s41550-022-01799-5
S. N. Zhang, A. Santangelo, M. Feroci et al., Enhanced X-ray Timing and Polarimetry mission—eXTP. Sci. China Phys. Mech. 62, 1-25 (2019). doi: 10.1007/s11433-018-9309-2http://doi.org/10.1007/s11433-018-9309-2
S. N. Zhang, M. Hernanz, A. Santangelo et al., eXTP: Enhanced X-ray Timing and Polarization mission. Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Rays. 9905, 505-520 (2017). doi: 10.1117/12.2314582http://doi.org/10.1117/12.2314582
P.P. Li, Q.Q. Yin, Z.W. Li et al., CATCH: Chasing all transients constellation hunters’ space mission. Exp. Astron. 55, 447-486 (2023). doi: 10.1007/s10686-022-09879-0http://doi.org/10.1007/s10686-022-09879-0
F. Muleri, R. Piazzolla, A.D. Marco et al., IXPE instrument calibration equipment. Astropart. Phys. 136, 102658 (2022). doi: 10.1016/j.astropartphys.2021.102658http://doi.org/10.1016/j.astropartphys.2021.102658
C. Feng, H.X. Deng, Review of fully coherent free-electron lasers. Nucl. Sci. Tech. 29, 160 (2018). doi: 10.1007/s41365-018-0490-1http://doi.org/10.1007/s41365-018-0490-1
S.M. Guo, J.J. Wu, D.J. Hou, The development, performance, and applications of the monochromatic X-ray facilities in (0.218–301) keV at NIM, China. Nucl. Sci. Tech. 32(6), 65 (2021). doi: 10.1007/s41365-021-00890-2http://doi.org/10.1007/s41365-021-00890-2
D.L. Zhang, X. Li, S. Xiong et al., Energy response of GECAM gamma-ray detector based on LaBr3: Ce and SiPM arrays. Nucl. Instrum. Meth. A 921, 8-13 (2019). doi: 10.1016/j.nima.2018.12.032http://doi.org/10.1016/j.nima.2018.12.032
D. Gotz, J. Paul, S. Basa et al., SVOM: A new mission for gamma-ray burst studies. Memorie Della Societa Astronomica Italiana Supplementi 21(1), 162 (2009). doi: 10.1063/1.3155898http://doi.org/10.1063/1.3155898
Y.W. Dong, B.B. Wu, Y.G. Li et al., SVOM gamma ray monitor. Sci. China Phys. Mech. 53, 40-42 (2010). doi: 10.1007/s11433-010-0011-7http://doi.org/10.1007/s11433-010-0011-7
V. V. Aristov, A. I. Erko, A. Y. Nikulin et al., Observation of X-ray Bragg diffraction on the periodic surface relief of a perfect silicon crystal, Opt. Commun 58(5), 300-302 (1986). doi: 10.1016/0030-4018(86)90230-0http://doi.org/10.1016/0030-4018(86)90230-0
A. Zangwill (eds.) Modern Electrodynamics (Cambridge University Press, Cambridge, 2012), p. 635 doi: 10.1017/CBO9781139034777http://doi.org/10.1017/CBO9781139034777.
F. Muleri, P. Soffitta, R. Bellazzini et al., A very compact polarizer for X-ray polarimeter calibration. Proc. SPIE 6686, UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XV, 668610 (13 September 2007). doi: 10.1117/12.734647http://doi.org/10.1117/12.734647
K.P. Champion, R.N. Whittem, Utilization of increased sensitivity of X-ray fluorescence spectrometry due to polarization of the background radiation. Nature 199, 1082-1082 (1963). doi: 10.1038/1991082a0http://doi.org/10.1038/1991082a0
N. Saito, R. Tanaka, J. Kawai, Polarization and intensity of Compton scattering. X‐Ray Spectrometry 51(1), 86-90 (2022). doi: 10.1002/xrs.3261http://doi.org/10.1002/xrs.3261
S.M. Guo, Z. Jiang, J.J. Wu et al., Research on a tunable monochromatic X-ray source in (5 ∼ 40) keV. Appl. Radiat. Isotopes. 181, 110096 (2022). doi: 10.1016/j.apradiso.2022.110096http://doi.org/10.1016/j.apradiso.2022.110096
S.M. Guo, J.J. Wu, J. Zhang et al., Study on silicon drift detector efficiency using Monte–Carlo simulation and experimental methods. J. Engineering 2019(23), 8543-8545 (2019). doi: 10.1049/joe.2018.9051http://doi.org/10.1049/joe.2018.9051
S. Agostinelli, J. Allison, K. Amako et al., Geant4–a Simulation Toolkit. Nucl. Instrum. Meth. A 506, 250-303 (2002). doi: 10.1016/S0168-9002(03)01368-8http://doi.org/10.1016/S0168-9002(03)01368-8
F. Muleri, P. Soffitta, R. Bellazzini et al., Gas pixel detector as an X-ray photoelectric polarimeter with a large field of view. Space Telescopes and Instrumentation 2008: Ultraviolet to Gamma Ray 7011, 683-693 (2008). doi: 10.1117/12.789621http://doi.org/10.1117/12.789621
B. Max, K. S. Schulze, I. Uschmann et al., High-precision X-ray polarimetry. Phys. Rev. Lett. 110(25), 254801 (2013). doi: 10.1103/PhysRevLett.110.254801http://doi.org/10.1103/PhysRevLett.110.254801
M. Lemonnier, O. Collet, C. Depautex et al., High vacuum two-crystal soft X-ray monochromator. Nucl. Instrum. Meth. 152, 109-111 (1978). doi: 10.1016/0029-554x(78)90246-xhttp://doi.org/10.1016/0029-554x(78)90246-x
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution