1.State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2.State Grid Fujian Economic Research Institute, Fuzhou 350012, China
3.National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
† TongningHu@hust.edu.cn
Scan for full text
Tong-Ning Hu, Hai-Meng Wang, Yi-Feng Zeng, et al. Fault locating for traveling-wave accelerators based on transmission line theory. [J]. Nuclear Science and Techniques 34(8):116(2023)
Tong-Ning Hu, Hai-Meng Wang, Yi-Feng Zeng, et al. Fault locating for traveling-wave accelerators based on transmission line theory. [J]. Nuclear Science and Techniques 34(8):116(2023) DOI: 10.1007/s41365-023-01279-z.
Radio-frequency (RF) breakdown analysis and location are critical for successful development of high-gradient traveling-wave (TW) accelerators, especially those expected to generate high-intensity, high-power beams. Compared with commonly used schemes involving dedicated devices or complicated techniques, a convenient approach for breakdown locating based on transmission line (TL) theory offers advantages in the typical constant-gradient TW-accelerating structure. To deliver such an approach, an equivalent TL model has been constructed to equate the TW-accelerating structure based on the fundamental theory of the TL transient response in the time domain. An equivalence relationship between the TW-accelerating structure and the TL model has been established via analytical derivations associated with grid charts and verified by TL circuit simulations. Furthermore, to validate the proposed fault-locating method in practical applications, an elaborate analysis via such a method has been conducted for the recoverable RF-breakdown phenomena observed at an existing prototype of a TW-accelerating-structure-based beam injector constructed at the Huazhong University of Science and Technology. In addition, further considerations and discussion for extending the applications of the proposed method have been given. This breakdown-locating approach involving the transient response in the framework of TL theory can be a conceivable supplement to existing methods, facilitating solution to construction problems at an affordable cost.
Traveling-wave structureRF breakdownFault locatingTransmission line
M. Sullivan, R. Jones, L. Cowie, et al., X-band linac design. Phys. Rev. Accel. Beams. 24, 082001 (2021). doi: 10.1103/PhysRevAccelBeams.24.082001http://doi.org/10.1103/PhysRevAccelBeams.24.082001
D. Angal-Kalinin, A. Bainbridge, AD. Brynes, et al.,Design, specifications, and first beam measurements of the compact linear accelerator for research and applications front end. Phys. Rev. Accel. Beams. 23, 044801 (2020). doi: 10.1103/PhysRevAccelBeams.23.044801http://doi.org/10.1103/PhysRevAccelBeams.23.044801
T. Inagaki, C. Kondo, H. Maesaka, et al., High-gradient C-band linac for a compact x-ray free-electron laser facility. Phys. Rev. ST Accel. Beams. 17, 080702 (2014). doi: 10.1103/PhysRevSTAB.17.080702http://doi.org/10.1103/PhysRevSTAB.17.080702
V. Paramonov, S. Philipp, I. Rybakov, et al., Design of an L-band normally conducting RF gun cavity for high peak and average RF power. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 854(11), 111-126 (2017). doi: 10.1016/j.nima.2017.02.058http://doi.org/10.1016/j.nima.2017.02.058
A. Degiovanni, S. Doebert, W. Farabolini, et al., High-Gradient test results from a CLIC prototype accelerating structure : TD26CC. CERN Accelerating science. (2014).
C. Obermair, T. Cartier-Michaud, A. Apollonio, et al., Explainable Machine Learning for Breakdown Prediction in High Gradient RF Cavities. Phys. Rev. Accel. Beams. 25, 104601 (2022). doi: 10.1103/PhysRevAccelBeams.25.104601http://doi.org/10.1103/PhysRevAccelBeams.25.104601
T.N. Hu, B.Q. Zeng, J.Y. Li, et al., Analysis and design considerations of coupler tuning based on improved equivalent circuit and 3D-EM simulations. Jpn. J. Appl. Phys. 61, 046003 (2022). doi: 10.35848/1347-4065/ac54fdhttp://doi.org/10.35848/1347-4065/ac54fd
S. Döbert, A. Grudiev, G. Riddone, et al., High Power test of a low group velocity X-band Accelerator Structure for CLIC. CERN Accelerating science. (2008).
B.J. Woolley, High Power X-band RF Test Stand Development and High Power. Testing of the CLIC Crab Cavity. Lancaster University (United Kingdom) ProQuest Dissertations Publishing, 2015. 10095164.
J.W. Wang, Research of RF high gradient physics and its application in accelerator structure development. High Gr. Accel. Struct. (2014). doi: 10.1142/9789814602105_0002http://doi.org/10.1142/9789814602105_0002
J.-H. Han, M. Cox, H. Huang, et al., Design of a high repetition rate S-band photocathode gun. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 647(1), 17-24 (2011). doi: 10.1016/j.nima.2011.05.032http://doi.org/10.1016/j.nima.2011.05.032
A. Grudiev, S. Calatroni, W. Wuensch, New local field quantity describing the high gradient limit of accelerating structures. Phys. Rev. ST Accel. Beams. 12, 102001 (2009). doi: 10.1103/PhysRevSTAB.12.102001http://doi.org/10.1103/PhysRevSTAB.12.102001
Y. Jiang, J.L. Hirshfield, Multi-harmonic cavity for suppressing surface pulsed heating. AIP Conference Proceedings. 1777, 060003 (2016). doi: 10.1063/1.4965632http://doi.org/10.1063/1.4965632
N. Catalán Lasheras, T. Argyropoulos, D. Esperante Pereira, et al., Commissioning of XBox-3: A very high capacity X-band test stand. In: 28th Linear Accelerator Conf.(LINAC’16), Paper 568, East Lansing, MI, USA, September 25-30 (2016). doi: 10.18429/JACoW-LINAC2016-TUPLR047http://doi.org/10.18429/JACoW-LINAC2016-TUPLR047
A. Descoeudres, Y. Levinsen, S. Calatroni, et al., Investigation of the dc vacuum breakdown mechanism. Phys. Rev. ST Accel. Beams. 12, 092001 (2009). doi: 10.1103/PhysRevSTAB.12.092001http://doi.org/10.1103/PhysRevSTAB.12.092001
A. Hassanein, Z. Insepov, J. Norem, et al., Effects of surface damage on rf cavity operation. Phys. Rev. ST Accel. Beams. 9, 062001 (2006). doi: 10.1103/PhysRevSTAB.9.062001http://doi.org/10.1103/PhysRevSTAB.9.062001
E. Sicking, R. Ström, From precision physics to the energy frontier with the Compact Linear Collider. Phys. Nat. Phys. 16, 386-392 (2020). doi: 10.1038/s41567-020-0834-8http://doi.org/10.1038/s41567-020-0834-8
X.C. Lin, H. Zha, J.R. Shi, et al., Fabrication, tuning, and high-gradient testing of an X-band traveling-wave accelerating structure for VIGAS. Nucl. Sci. Tech. 33, 102 (2022). doi: 10.1007/s41365-022-01086-yhttp://doi.org/10.1007/s41365-022-01086-y
A. Palaia, M. Jacewicz, R. Ruber, et al., Effects of rf breakdown on the beam in the Compact Linear Collider prototype accelerator structure. Phys. Rev. ST Accel. Beams. 16, 081004 (2013). doi: 10.1103/PhysRevSTAB.16.081004http://doi.org/10.1103/PhysRevSTAB.16.081004
F. Wang, C. Adolphsen, C. Nantista, Study of radio frequency breakdown in pressurized L-band waveguide for the International Linear Collider. Appl. Phys. Lett. 103, 104106 (2013). doi: 10.1063/1.4820437http://doi.org/10.1063/1.4820437
X.W. Wu, J.R. Shi, H.B. Chen, et al., High-gradient breakdown studies of an X-band Compact Linear Collider prototype structure. Phys. Rev. Accel. Beams. 20, 052001 (2017). doi: 10.1103/PhysRevAccelBeams.20.052001http://doi.org/10.1103/PhysRevAccelBeams.20.052001
T. Abe, T. Kageyama, H. Sakai, et al., Breakdown study based on direct in situ observation of inner surfaces of an rf accelerating cavity during a high-gradient test. Phys. Rev. Accel. Beams. 19, 102001 (2016). doi: 10.1103/PhysRevAccelBeams.19.102001http://doi.org/10.1103/PhysRevAccelBeams.19.102001
M.D. Forno, V. Dolgashev, G. Bowden, et al., Experimental measurements of rf breakdowns and deflecting gradients in mm-wave metallic accelerating structures. Phys. Rev. Accel. Beams. 19, 051302 (2016). doi: 10.1103/PhysRevAccelBeams.19.051302http://doi.org/10.1103/PhysRevAccelBeams.19.051302
E.A. Nanni, V.A. Dolgashev, G. Bowden, et al., Prototyping high-gradient mm-wave accelerating structures. J. Phys.: Conf. Ser. 874, 012039 (2017). doi: 10.1088/1742-6596/874/1/012039http://doi.org/10.1088/1742-6596/874/1/012039
B. Woolley, G. Burt, A. C. Dexter, et al., High-gradient behavior of a dipole-mode rf structure. Phys. Rev. Accel. Beams. 23, 122002 (2020). doi: 10.1103/PhysRevAccelBeams.23.122002http://doi.org/10.1103/PhysRevAccelBeams.23.122002.
X.C. Lin, H. Zha, J.R. Shi, et al., Design, fabrication, and testing of low-group-velocity S-band traveling-wave accelerating structure. Nucl. Sci. Tech. 33, 147 (2022). doi: 10.1007/s41365-022-01124-9http://doi.org/10.1007/s41365-022-01124-9
M. Jacewicz, V. Ziemann, T. Ekelöf, et al., Spectrometers for RF breakdown studies for CLIC. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 828, 63-71 (2016). doi: 10.1016/j.nima.2016.05.031http://doi.org/10.1016/j.nima.2016.05.031
A. Degiovanni, S. Doebert, W. Farabolini, et al., Diagnostics and Analysis Techniques for High Power X-Band Accelerating Structures. In: 27th Linear Accelerator Conference, Geneva, Switzerland, Aug 31- Sep 5 (2014).
Rajamaki, Robin, Vacuum arc localization in CLIC prototype radio frequency accelerating structures. CERN Accelerating science. (2016).
Z.Q. Geng, R. Kalt, Advanced topics on RF amplitude and phase detection for low-level RF systems. Nucl. Sci. Tech. 30, 146 (2019). doi: 10.1007/s41365-019-0670-7http://doi.org/10.1007/s41365-019-0670-7
G.L. Wang, J.Q. Zhang, L. Li, et al., The control and measurement of high power high-gradient acceleration structures. Nucl. Sci. Tech. 26, 030102 (2015). doi: 10.13538/j.1001-8042/nst.26.030102http://doi.org/10.13538/j.1001-8042/nst.26.030102
C. Tennant, A. Carpenter, T. Powers, et al., Superconducting radio-frequency cavity fault classification using machine learning at Jefferson Laboratory. Phys. Rev. Accel. Beams. 23, 114601 (2020). doi: 10.1103/PhysRevAccelBeams.23.114601http://doi.org/10.1103/PhysRevAccelBeams.23.114601
E. Fol, R. Tomás, J. C. De Portugal, et al., Detection of faulty beam position monitors using unsupervised learning. Phys. Rev. Accel. Beams. 23, 102805 (2020). doi: 10.1103/PhysRevAccelBeams.23.102805http://doi.org/10.1103/PhysRevAccelBeams.23.102805
O. Convery, L. Smith, Y. Gal, et al., Uncertainty quantification for virtual diagnostic of particle accelerators. Phys. Rev. Accel. Beams. 24, 074602 (2021). doi: 10.1103/PhysRevAccelBeams.24.074602http://doi.org/10.1103/PhysRevAccelBeams.24.074602
S. R. Xie, G. R. Stewart, J. J. Hamlin, et al., Functional form of the superconducting critical temperature from machine learning. Phys. Rev. B. 100, 174513 (2019). doi: 10.1103/PhysRevB.100.174513http://doi.org/10.1103/PhysRevB.100.174513
C. Emma, A. Edelen, M. Hogan, et al., Uncertainty quantification for virtual diagnostic of particle accelerators. Phys. Rev. Accel. Beams. 21, 112802 (2018). doi: 10.1103/PhysRevAccelBeams.21.112802http://doi.org/10.1103/PhysRevAccelBeams.21.112802
H.K. Liu, T. Jia, L. Mou, et al., Improved traveling wave based fault location scheme for transmission lines. In: 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), Changsha, China, November 26-29 (2015). doi: 10.1109/DRPT.2015.7432375http://doi.org/10.1109/DRPT.2015.7432375
C.Q. Cui, Y.H. Cheng, B. Liu, et al., Fault Location Approach for Teed Transmission Line Independent of Wave Speed. IOP Conf. Ser. Earth Environ. Sci. 634, 012049 (2021). doi: 10.1088/1755-1315/634/1/012049http://doi.org/10.1088/1755-1315/634/1/012049
B. Wang, L. Yang, X.Z. Dong, et al., Fault location method for high-voltage direct current transmission line using incident current travelling waves. The Journal of Engineering 2018(15), 1165-1168 (2018). doi: 10.1049/joe.2018.0278http://doi.org/10.1049/joe.2018.0278
Y.L. He, N. Li, C. Zhang, et al., Power Cable Fault Location Method Based on Pulse Current Method. In: 2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), Tianjin, China, October 16-18 (2020). doi: 10.1109/ASEMD49065.2020.9276360http://doi.org/10.1109/ASEMD49065.2020.9276360
T.N. Hu, Y.J. Pei, G.Y. Feng, Electron beamline of a Linac-based injector applied to a compact free electron laser-terahertz radiation source. Jpn. J. Appl. Phys. 57, 100310 (2018). doi: 10.7567/JJAP.57.100310http://doi.org/10.7567/JJAP.57.100310
T.N. Hu, Y.J. Pei, B. Qin, et al., Development of a novel thermionic RF electron gun applied on a compact THz-FEL facility. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 887, 1-6 (2018). doi: 10.1016/j.nima.2017.12.070http://doi.org/10.1016/j.nima.2017.12.070
K. Liu, S.L. Tian, Y.L. Xiao, et al., Network cable fault location based on the width pulse Time-Domain reflection. Journal of University of Electronic Science and Technology of China. 38(06), 975 (2009). (In Chinese).
P. Liang, Y.H. Peng and B.Y. Xu, et al., The application of correlation method in cable fault location using pulse reflection. Journal of Shandong University (Engineering Science). (01), 89 (2004). (In Chinese).
H. Hanaki, Y. Otake, S. Anami, et al., Test operation of the PF linac RF system upgraded for the KEKB injector. In: 5th European Particle Accelerator Conference, Sitges(Barcelona), Spain, June 10-14 (1996).
Q.S. Chen, T.N. Hu, Q. Bin, et al., Location of RF Breakdown Point in a Coaxially Loaded LINAC Cavity. In: 8th Int. Particle Accelerator Conference, Copenhagen, Denmark, May 14-19 (2017).
T.N. Hu, J.Y. Li, Y.J. Pei, et al., Indirect estimations of energy and energy spread for a compact free electron laser-terahertz pre-injector using RF measuring parameters. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 1016 165775 (2021). doi: 10.1016/j.nima.2021.165775http://doi.org/10.1016/j.nima.2021.165775
T.N. Hu, Y.J. Pei, G.Y. Feng, et al., Bunch length evaluation for typical low-energy beam injectors based on RF-phasing techniques. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 916, 87-93 (2019). doi: 10.1016/j.nima.2018.10.200http://doi.org/10.1016/j.nima.2018.10.200
Q.R. Yan, Circuit Theory[M]. Beijing: Chinese High Education Press, 287-290 (2018). (In Chinese)
Y. Lu, Study on design of an electron linear accelerator with high capture efficiency. Huazhong University of Science and Technology (2019). (In Chinese)
0
Views
2
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution