1.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
3.School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
4.Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
5.Shanghai Key Laboratory of Cryogenics & Superconducting RF Technology
6.Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences
* fangwencheng@zjlab.org.cn;
duq@sibet.ac.cn;
Scan for full text
Yu-Qing Yang, Wen-Cheng Fang, Xiao-Xia Huang, et al. A new imaging mode based on X-ray CT as prior image and sparsely sampled projections for rapid clinical proton CT. [J]. Nuclear Science and Techniques 34(8):126(2023)
Yu-Qing Yang, Wen-Cheng Fang, Xiao-Xia Huang, et al. A new imaging mode based on X-ray CT as prior image and sparsely sampled projections for rapid clinical proton CT. [J]. Nuclear Science and Techniques 34(8):126(2023) DOI: 10.1007/s41365-023-01280-6.
Proton computed tomography (CT) has a distinct practical significance in clinical applications. It eliminates 3–5% errors caused by the transformation of Hounsfield unit (HU) to relative stopping power (RSP) values when using X-ray CT for positioning and treatment planning systems (TPSs). Following the development of FLASH proton therapy, there are increased requirements for accurate and rapid positioning in TPSs. Thus, a new rapid proton CT imaging mode is proposed based on sparsely sampled projections. The proton beam was boosted to 350 MeV by a compact proton linear accelerator (linac). In this study, the comparisons of the proton scattering with the energy of 350 MeV and 230 MeV are conducted based on GEANT4 simulations. As the sparsely sampled information associated with beam acquisitions at 12 angles is not enough for reconstruction, X-ray CT is used as a prior image. The RSP map generated by converting the X-ray CT was constructed based on Monte Carlo simulations. Considering the estimation of the most likely path (MLP), the prior image-constrained compressed sensing (PICCS) algorithm is used to reconstruct images from two different phantoms using sparse proton projections of 350 MeV parallel proton beam. The results show that it is feasible to realize the proton image reconstruction with the rapid proton CT imaging proposed in this paper. It can produce RSP maps with much higher accuracy for TPSs and fast positioning to achieve ultra-fast imaging for real-time image-guided radiotherapy (IGRT) in clinical proton therapy applications.
Proton CTReal-time image guidanceImage reconstructionProton therapy
Particle Therapy Cooperative Group (PTCOG) Collaboration. https://www.ptcog.comhttps://www.ptcog.com.
M. Yang, X.R. Zhu, P.C. Park et al., Comprehensive analysis of proton range uncertainties related to patient stopping-power-ratio estimation using the stoichiometric calibration. Phys. Med. Biol. 57(13) 4095-4115 (2012). doi: 10.1088/0031-9155/57/13/4095http://doi.org/10.1088/0031-9155/57/13/4095
E.S. Diffenderfer, B.S. Srensen, A. Mazal et al., The current status of preclinical proton FLASH radiation and future directions. Med. Phys. 49(3) 2039-2054 (2022). doi: 10.1002/mp.15276http://doi.org/10.1002/mp.15276
F. Ulrich-Pur, T. Bergauer, A. Burker et al., Demonstrator for a proton CT system at MedAustron. arXiv: Instrumentation and detectors. 2020. doi: 10.48550/arXiv.2003.00115http://doi.org/10.48550/arXiv.2003.00115
M. Esposito, C. Waltham, J. T. Taylor et al., PRaVDA: the first solid-state system for proton computed tomography. Phys. Med. 55, 149-154 (2018). doi: 10.1016/j.ejmp.2018.10.020http://doi.org/10.1016/j.ejmp.2018.10.020
G. Dedes, H. Drosten, S. Gtz et al., Comparative accuracy and resolution assessment of two prototype proton computed tomography scanners. Med. Phys. 49 (7) 4671-4681 (2022). doi: 10.1002/mp.15657http://doi.org/10.1002/mp.15657
R.P. Johnson, V.A. Bashkirov, G. Coutrakon et al., Results from a prototype proton-CT head scanner. Phys. Procedia. 90, 209-214 (2017). doi: 10.1016/j.phpro.2017.09.060http://doi.org/10.1016/j.phpro.2017.09.060
S. Beddar, C.D. Darne, D.G. Robertson, Development of a novel proton CT system using a 3D scintillator detector. J. Phys. Conf. Ser. 2167(1) 012021- (2022). doi: 10.1088/1742-6596/2167/1/01202http://doi.org/10.1088/1742-6596/2167/1/01202
W.C. Fang, X.X. Huang, J.H. Tan et al., Proton linac-based therapy facility for ultra-high dose rate (FLASH) treatment. Nucl. Sci. Tech. 32, 4 (2021). doi: 10.1007/s41365-021-00872-4http://doi.org/10.1007/s41365-021-00872-4
E. Oponowicz, H. Owen, Superconducting Gantry Design for Proton Tomography, in proceedings of IPAC2017, Copenhagen, Denmark, 4795--4797 (2017). doi: 10.18429/JACOW-IPAC2017-THPVA140http://doi.org/10.18429/JACOW-IPAC2017-THPVA140
Y.Q. Yang, W.C. Fang, X.X. Huang et al., Static superconducting gantry-based proton CT combined with X-ray CT as prior image for FLASH proton therapy. Nucl. Sci. Tech. 34, 11 (2023). doi: 10.1007/s41365-022-01163-2http://doi.org/10.1007/s41365-022-01163-2
Y. Zhang, W.C. Fang, X.X. Huang et al., Design, fabrication, and cold test of an S-band high-gradient accelerating structure for compact proton therapy facility. Nucl. Sci. Tech. 32, 38 (2021). doi: 10.1007/s41365-021-00869-zhttp://doi.org/10.1007/s41365-021-00869-z
Y. Zhang, W.C. Fang, X.X. Huang et al., Radio frequency conditioning of an S-band accelerating structure prototype for compact proton therapy facility. Nucl. Sci. Tech. 32, 64 (2021). doi: 10.1007/s41365-021-00891-1http://doi.org/10.1007/s41365-021-00891-1
C.E. Ordoñez, N. Karonis, K. Duffin et al., A real-time image reconstruction system for particle treatment planning using proton computed tomography (pCT). Phys. Procedia. 90, 193-199 (2017). doi: 10.1016/j.phpro.2017.09.058http://doi.org/10.1016/j.phpro.2017.09.058
B. Schaffner, E. Pedroni, The precision of proton range calculations in proton radiotherapy treatment planning: Experimental verification of the relation between CT-HU and proton stopping power. Phys. Med. Biol. 43(6), 1579-1592 (1998). doi: 10.1088/0031-9155/43/6/016http://doi.org/10.1088/0031-9155/43/6/016
V.A. Bashkirov, R.W. Schulte, R.F. Hurley et al., Novel scintillation detector design and performance for proton radiography and computed tomography. Phys. Procedia. 43(2), 664-674 (2016). doi: 10.1118/1.4939255http://doi.org/10.1118/1.4939255
G. Coutrakon, V. Bashkirov, F. Hurley et al., Design and construction of the 1st proton CT scanner, American Institute of Physics American Institute of Physics. 1525, 1 (2013). doi: 10.1118/1.4939255http://doi.org/10.1118/1.4939255
A. Kamal, Passage of Charged Particles Through Matter. In: Nuclear Physics. Graduate Texts in Physics, Springer, Berlin, Heidelberg, 2014. pp. 1-81, doi: 10.1007/978-3-642-38655-8_1http://doi.org/10.1007/978-3-642-38655-8_1
C. Wang, J.H. Tan, X.X. Huang et al., Design optimization and cold RF test of a 2.6-cell cryogenic RF gun. Nucl. Sci. Tech. 32(9), 97 (2021), doi: 10.1007/s41365-021-00925-8http://doi.org/10.1007/s41365-021-00925-8
J.H. Tan, Q. Gu, W.C. Fang et al., Two-mode polarized traveling wave deflecting structure. Nucl. Sci. Tech. 26(4), 040102 (2015). doi: 10.13538/j.1001-8042/nst.26.040102http://doi.org/10.13538/j.1001-8042/nst.26.040102
C.C. Xiao, J.Q. Zhang, J.H. Tan et al., Design and preliminary test of the LLRF in C band high-gradient test facility for SXFEL. Nucl. Sci. Tech. 31(10), 100 (2020). doi: 10.1007/s41365-020-00806-6http://doi.org/10.1007/s41365-020-00806-6
V. Giacometti, V.A. Bashkirov, P. Piersimoni et al., Software platform for simulation of a prototype proton CT scanner. Med Phys. 44(3), 1002-1016 (2017). doi: 10.1002/mp.12107http://doi.org/10.1002/mp.12107
T. Li, Z.G. Liang, J.V. Singanallur et al., Reconstruction for proton computed tomography by tracing proton trajectories: A Monte Carlo study. Med Phys. 33 (3), 699-706 (2006). doi: 10.1118/1.2171507http://doi.org/10.1118/1.2171507
G.H. Chen, J. Tang, S. Leng, Prior image constrained compressed sensing (PICCS): A method to accurately reconstruct dynamic CT images from highly undersampled projection data sets. Med Phys. 35(2), 660-663 (2008). doi: 10.1118/1.2836423http://doi.org/10.1118/1.2836423
S.N. Penfolda, R.W. Schulte, Y. Censor et al., Total variation superiorization schemes in proton computed tomography image reconstruction. Med. Phys. 37(11), 5887-5895 (2010). doi: 10.1118/1.3504603http://doi.org/10.1118/1.3504603
R.C. Gonzalez, R.E. Woods, B.R. Masters, Digital image processing, Third Edition. J. Biomed. Opt. 14(2), 029901 (2009). doi: 10.1117/1.3115362http://doi.org/10.1117/1.3115362
W. Yu, L. Zeng, A novel weighted total difference based image reconstruction algorithm for few-view computed tomography. Plos. One. 9(10), e109345 (2014). doi: 10.1371/journal.pone.0109345http://doi.org/10.1371/journal.pone.0109345
S. Agostinelli, J. Allison, K. Amako et al., GEANT4–A simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment. 506(3), 250-303 (2003). doi: 10.1016/S0168-9002(03)01368-8http://doi.org/10.1016/S0168-9002(03)01368-8
R.F. Hurley, R.W. Schulte, V.A. Bashkirov et al., Water-equivalent path length calibration of a prototype proton CT scanner. Med Phys. 39(5), 2438-46 (2012). doi: 10.1118/1.3700173http://doi.org/10.1118/1.3700173
R.W. Schulte, S.N. Penfold, J.T. Tafas et al., A maximum likelihood proton path formalism for application in proton computed tomography. Med Phys. 35(11), 4849-4856 (2008). doi: 10.1118/1.2986139http://doi.org/10.1118/1.2986139
D. Williams, The most likely path of an energetic charged particle through a uniform medium. Phys. Med. Biol. 49(13) 2899-2911 (2004). doi: 10.1088/0031-9155/49/13/010http://doi.org/10.1088/0031-9155/49/13/010
H. Zhang, G.J. Gang, H. Dang et al., Regularization Analysis and Design for Prior-Image-Based X-ray CT Reconstruction[J]. IEEE T MED IMAGING. 37(12), 2675-2686 (2018). doi: 10.1109/TMI.2018.2847250http://doi.org/10.1109/TMI.2018.2847250
H. Zhang, D. Capaldi, D. Zeng et al., Prior-image-based CT reconstruction using attenuation-mismatched priors. Phys Med Biol. 66(6), 064007 (2021). doi: 10.1088/1361-6560/abe760http://doi.org/10.1088/1361-6560/abe760.
D F. DeJongh, E.A. DeJongh, V. Rykalin et al., A comparison of proton stopping power measured with proton CT and x-ray CT in fresh postmortem porcine structures. Med Phys. 48(12) 7998-8009 (2021). doi: 10.1002/mp.15334http://doi.org/10.1002/mp.15334
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution