1.Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
2.ShanghaiTech University, Shanghai 201210, China
3.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
4.University of Chinese Academy of Sciences, Beijing 100049, China
* Hui Jiang, jiangh@sari.ac.cn
**Aiguo Li, liag@sari.ac.cn
Scan for full text
Jia-Nan Xie, Hui Jiang, Ai-Guo Li, et al. Deep learning for estimation of Kirkpatrick–Baez mirror alignment errors. [J]. Nuclear Science and Techniques 34(8):122(2023)
Jia-Nan Xie, Hui Jiang, Ai-Guo Li, et al. Deep learning for estimation of Kirkpatrick–Baez mirror alignment errors. [J]. Nuclear Science and Techniques 34(8):122(2023) DOI: 10.1007/s41365-023-01282-4.
A deep learning-based automated Kirkpatrick–Baez mirror alignment method is proposed for synchrotron radiation. We trained a convolutional neural network (CNN) on simulated and experimental imaging data of a focusing system. Instead of learning directly from bypass images, we use a scatterer for X-ray modulation and speckle generation for image feature enhancement. The smallest normalized root mean square error on the validation set was 4%. Compared with conventional alignment methods based on motor scanning and analyzer setups, the present method simplified the optical layout and estimated alignment errors using a single-exposure experiment. Single-shot misalignment error estimation only took 0.13 s, significantly outperforming conventional methods. We also demonstrated the effects of the beam quality and pretraining using experimental data. The proposed method exhibited strong robustness, can handle high-precision focusing systems with complex or dynamic wavefront errors, and provides an important basis for intelligent control of future synchrotron radiation beamlines.
Deep learningSynchrotron radiationOptics alignment
P. Schöppe, C.S. Schnohr, M. Oertel et al., Improved Ga grading of sequentially produced Cu (In, Ga) Se2 solar cells studied by high resolution X-ray fluorescence. Appl. Phys. Lett. 106, 013909 (2015). doi: 10.1063/1.4905347http://doi.org/10.1063/1.4905347
C. Sanchez-Cano, D. Gianolio, I. Romero-Canelon, et al., Nanofocused synchrotron X-ray absorption studies of the intracellular redox state of an organometallic complex in cancer cells. Chem. Commun. 55, 7065-7068 (2019). doi: 10.1039/C9CC01675Ahttp://doi.org/10.1039/C9CC01675A
P. Kirkpatrick, A.V. Baez, Formation of Optical Images by X-Rays. J. Opt. Soc. Am. 38, 766-774 (1948). doi: 10.1364/JOSA.38.000766http://doi.org/10.1364/JOSA.38.000766
D.-C. Zhu, J.-H. Yue, Y.-F. Sui et al., Performance of beam size monitor based on Kirkpatrick–Baez mirror at SSRF. Nucl. Sci. Tech. 29, 148 (2018). doi: 10.1007/s41365-018-0477-yhttp://doi.org/10.1007/s41365-018-0477-y
S. Handa, T. Kimura, H. Mimura, et al., Extended knife-edge method for characterizing sub-10-nm X-ray beams. Nucl. Instrum. Methods Phys. Res. Sect A. 616, 246-250 (2010). doi: 10.1016/j.nima.2009.10.131http://doi.org/10.1016/j.nima.2009.10.131
B.C. Platt, R. Shack. History and principles of Shack-Hartmann wavefront sensing. SLACK Incorporated Thorofare, NJ. 2001: S573-S577. doi: 10.3928/1081-597X-20010901-13http://doi.org/10.3928/1081-597X-20010901-13
H. Wang, S. Berujon, K. Sawhney, Development of at-wavelength metrology using grating-based shearing interferometry at Diamond Light Source. J. Phys. Conf. Ser. 425, 052021 (2013). doi: 10.1088/1742-6596/425/5/052021http://doi.org/10.1088/1742-6596/425/5/052021
T. Weitkamp, B. Nöhammer, A. Diaz et al., X-ray wavefront analysis and optics characterization with a grating interferometer. Appl. Phys. Lett. 86, 054101 (2005). doi: 10.1063/1.1857066http://doi.org/10.1063/1.1857066
S. Bérujon, E. Ziegler, R. Cerbino et al., Two-dimensional X-ray beam phase sensing. Phys. Rev. Lett. 108, 158102 (2012). doi: 10.1103/PhysRevLett.108.158102http://doi.org/10.1103/PhysRevLett.108.158102
N. Tian, H. Jiang, A. Li et al., Influence of diffuser grain size on the speckle tracking technique. J. Synchrotron Radiat. 27, 146-157 (2020). doi: 10.1107/S1600577519015200http://doi.org/10.1107/S1600577519015200
N. Tian, H. Jiang, A. Li et al., High-precision speckle-tracking x-ray imaging with adaptive subset size choices. Sci. Rep. 10, 1-12 (2020). doi: 10.1038/s41598-020-71158-9http://doi.org/10.1038/s41598-020-71158-9
T. Zhou, H. Wang, O. Fox et al., Auto-alignment of X-ray focusing mirrors with speckle-based at-wavelength metrology. Opt. Express. 26, 26961-70 (2018). doi: 10.1364/OE.26.026961http://doi.org/10.1364/OE.26.026961
T. Inoue, S. Matsuyama, J. Yamada et al., Generation of an X-ray nanobeam of a free-electron laser using reflective optics with speckle interferometry. J. Synchrotron Radiat. 27, 883-889 (2020). doi: 10.1107/S1600577520006980http://doi.org/10.1107/S1600577520006980
Y. Nishizaki, M. Valdivia, R. Horisaki et al., Deep learning wavefront sensing. Opt. Express. 27 240-251 (2019). doi: 10.1364/OE.27.000240http://doi.org/10.1364/OE.27.000240
G. Allan, I. Kang, E.S. Douglas et al., Deep residual learning for low-order wavefront sensing in high-contrast imaging systems. Opt. Express. 28, 26267-26283 (2020). doi: 10.1364/OE.397790http://doi.org/10.1364/OE.397790
G. Ju, X. Qi, H. Ma et al., Feature-based phase retrieval wavefront sensing approach using machine learning. Opt Express. 26, 31767-31783 (2018). doi: 10.1364/OE.26.031767http://doi.org/10.1364/OE.26.031767
S.W. Paine, J.R. Fienup, Machine learning for improved image-based wavefront sensing. Opt. Lett. 43, 1235-1238 (2018). doi: 10.1364/OL.43.001235http://doi.org/10.1364/OL.43.001235
H. Ding, F. Li, Z. Meng et al., Auto-focusing and quantitative phase imaging using deep learning for the incoherent illumination microscopy system. Opt. Express. 29, 26385-26403 (2021). doi: 10.1364/OE.434014http://doi.org/10.1364/OE.434014
J. Liao, X. Chen, G. Ding et al., Deep learning-based single-shot autofocus method for digital microscopy. Biomed. Opt. Express. 13, 314-327 (2022). doi: 10.1364/BOE.446928http://doi.org/10.1364/BOE.446928
S. Montresor, M. Tahon, P. Picart, Review of deep learning based de-noising algorithms for phase imaging and applications to high-speed coherent imaging, in OSA Imaging and Applied Optics Congress 2021 (3D, COSI, DH, ISA, pcAOP), Washington, DC 19 July 2021 Optica Publishing Group.
T.-W. Ke, A.S. Brewster, S.X. Yu et al., A convolutional neural network-based screening tool for X-ray serial crystallography. J. Synchrotron Radiat. 25, 655-670 (2018). doi: 10.1107/S1600577518004873http://doi.org/10.1107/S1600577518004873
S. Lolla, H. Liang, A.G. Kusne et al., A semi-supervised deep-learning approach for automatic crystal structure classification. J. Appl. Crystallogr. 55, 882-889 (2022). doi: 10.1107/S1600576722006069http://doi.org/10.1107/S1600576722006069
Y.-J. Ma, Y. Ren, P. Feng et al., Sinogram denoising via attention residual dense convolutional neural network for low-dose computed tomography. Nucl. Sci. Tech. 32, 41 (2021). doi: 10.1007/s41365-021-00874-2http://doi.org/10.1007/s41365-021-00874-2
Z. Liu, H. Sharma, J.-S. Park et al., BraggNN: fast X-ray Bragg peak analysis using deep learning. IUCrJ. 9, 104-113 (2022). doi: 10.1107/S2052252521011258http://doi.org/10.1107/S2052252521011258
L.-Y. Zhou, H. Zha, J.-R. Shi et al., A non-invasive diagnostic method of cavity detuning based on a convolutional neural network. Nucl. Sci. Tech. 33, 94 (2022). doi: 10.1007/s41365-022-01069-zhttp://doi.org/10.1007/s41365-022-01069-z
Y.-B. Yu, G.-F. Liu, W. Xu et al., Research on tune feedback of the Hefei Light Source II based on machine learning. Nucl. Sci. Tech. 33, 28 (2022). doi: 10.1007/s41365-022-01018-whttp://doi.org/10.1007/s41365-022-01018-w
J.W. Goodman, Statistical optics, (John Wiley & Sons,2015)
K. He, X. Zhang, S. Ren, et al., Deep residual learning for image recognition, in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016.
D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, in 3rd International Conference on Learning Representations, San Diego, CA, USA 7-9 May 2015.
H. Wang, S. Yan, F. Yan, et al., Research on spatial coherence of undulator source in Shanghai synchrotron radiation facility. Acta Phys. Sin. 61, 144102 (2012). doi: 10.7498/aps.61.144102http://doi.org/10.7498/aps.61.144102
L.L. Zhang, S. Yan, S. Jiang et al., Hard X-ray micro-focusing beamline at SSRF. Nucl. Sci. Tech. 26, 060101 (2015). doi: 10.13538/j.1001-8042/nst.26.060101http://doi.org/10.13538/j.1001-8042/nst.26.060101
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution