1.Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China
2.Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, Lanzhou 730000, China
3.Gansu Provincial Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China,
4.University of Chinese Academy of Sciences, Beijing 100049, China
5.Putian Lanhai Nuclear Medicine Research Center, Putian 351152, China
† liqiang@impcas.ac.cn
Scan for full text
Wen-Yu Wang, Yuan-Yuan Ma, Hui Zhang, et al. Comparison between 4D robust optimization methods for carbon-ion treatment planning. [J]. Nuclear Science and Techniques 34(9):139(2023)
Wen-Yu Wang, Yuan-Yuan Ma, Hui Zhang, et al. Comparison between 4D robust optimization methods for carbon-ion treatment planning. [J]. Nuclear Science and Techniques 34(9):139(2023) DOI: 10.1007/s41365-023-01285-1.
Intensity-modulated particle therapy (IMPT) with carbon ions is comparatively susceptible to various uncertainties caused by breathing motion, including range, setup, and target positioning uncertainties. To determine relative biological effectiveness-weighted dose (RWD) distributions that are resilient to these uncertainties, the reference phase-based four-dimensional (4D) robust optimization (RP-4DRO) and each phase-based 4D robust optimization (EP-4DRO) method in carbon-ion IMPT treatment planning were evaluated and compared. Based on RWD distributions, 4DRO methods were compared with 4D conventional optimization using planning target volume (PTV) margins (PTV-based optimization) to assess the effectiveness of the robust optimization methods. Carbon-ion IMPT treatment planning was conducted in a cohort of five lung cancer patients. The results indicated that the EP-4DRO method provided better robustness (,P,=0.080) and improved plan quality (,P,=0.225) for the clinical target volume (CTV) in the individual respiratory phase when compared with the PTV-based optimization. Compared with the PTV-based optimization, the RP-4DRO method ensured the robustness (,P,=0.022) of the dose distributions in the reference breathing phase, albeit with a slight sacrifice of the target coverage (,P,=0.450). Both 4DRO methods successfully maintained the doses delivered to the organs at risk (OARs) below tolerable levels, which were lower than the doses in the PTV-based optimization (,P,<,0.05). Furthermore, the RP-4DRO method exhibited significantly superior performance when compared with the EP-4DRO method in enhancing overall OAR sparing in either the individual respiratory phase or reference respiratory phase (,P,<,0.05). In general, both 4DRO methods outperformed the PTV-based optimization in terms of OAR sparing and robustness.
Intensity-modulated particle therapyCarbon-ion radiotherapyUncertaintiesFour-dimensional robust optimizationLung cancerRelative biological effectiveness-weighted doseRobustnessTreatment planning system
K. Anderle, J. Stroom, S. Vieira et al., Treatment planning with intensity modulated particle therapy for multiple targets in stage IV non-small cell lung cancer. Phys. Med. Biol. 63, 025034 (2018). doi: 10.1088/1361-6560/aa9c62http://doi.org/10.1088/1361-6560/aa9c62
Y. Luo, S.C. Huang, H. Zhang et al., Assessment of the induced radioactivity in the treatment room of the heavy-ion medical machine in Wuwei using PHITS. Nucl. Sci. Tech. 34, 29 (2023). doi: 10.1007/s41365-023-01181-8http://doi.org/10.1007/s41365-023-01181-8
S. Ge, X. Wang, Z. Liao et al., Potential for improvements in robustness and optimality of intensity-modulated proton therapy for lung cancer with 4-dimensional robust optimization. Cancers 11, 35 (2019). doi: 10.3390/cancers11010035http://doi.org/10.3390/cancers11010035
A.J. Lomax, Intensity modulated proton therapy and its sensitivity to treatment uncertainties 1: the potential effects of calculational uncertainties. Phys. Med. Biol. 53, 1027-1042 (2008). doi: 10.1088/0031-9155/53/4/014http://doi.org/10.1088/0031-9155/53/4/014
J. Löf, B.K. Lind, A. Brahme, An adaptive control algorithm for optimization of intensity modulated radiotherapy considering uncertainties in beam profiles, patient set-up and internal organ motion. Phys. Med. Biol. 43, 1605-1628 (1998). doi: 10.1088/0031-9155/43/6/018http://doi.org/10.1088/0031-9155/43/6/018
A. J. Lomax, Intensity modulated proton therapy and its sensitivity to treatment uncertainties 2: the potential effects of inter-fraction and inter-field motions. Phys. Med. Biol. 53, 1043-1056 (2008). doi: 10.1088/0031-9155/53/4/015http://doi.org/10.1088/0031-9155/53/4/015
M. Wolf, K. Anderle, M. Durante et al., Robust treatment planning with 4D intensity modulated carbon ion therapy for multiple targets in stage IV non-small cell lung cancer. Phys. Med. Biol. 65, 215012 (2020). doi: 10.1088/1361-6560/aba1a3http://doi.org/10.1088/1361-6560/aba1a3
J. Unkelbach, M. Alber, M. Bangert et al., Robust radiotherapy planning. Phys. Med. Biol. 63, 22TR02 (2018). doi: 10.1088/1361-6560/aae659http://doi.org/10.1088/1361-6560/aae659
J. Unkelbach, T.C.Y. Chan, T. Bortfeld, Accounting for range uncertainties in the optimization of intensity modulated proton therapy. Phys. Med. Biol. 52, 2755-2773 (2007). doi: 10.1088/0031-9155/52/10/009http://doi.org/10.1088/0031-9155/52/10/009
J. Unkelbach, T. Bortfeld, B.C. Martin et al., Reducing the sensitivity of IMPT treatment plans to setup errors and range uncertainties via probabilistic treatment planning. Med. Phys. 36, 149-163 (2009). doi: 10.1118/1.3021139http://doi.org/10.1118/1.3021139
D. Pflugfelder, J.J. Wilkens, U. Oelfke, Worst case optimization: a method to account for uncertainties in the optimization of intensity modulated proton therapy. Phys. Med. Biol. 53, 1689-1700 (2008). doi: 10.1088/0031-9155/53/6/013http://doi.org/10.1088/0031-9155/53/6/013
A. Fredriksson, A. Forsgren, B. Hårdemark, Minimax optimization for handling range and setup uncertainties in proton therapy. Med. Phys. 38, 1672-1684 (2011). doi: 10.1118/1.3556559http://doi.org/10.1118/1.3556559
W. Liu, X. Zhang, Y. Li et al., Robust optimization of intensity modulated proton therapy. Med. Phys. 39, 1079-1091 (2012). doi: 10.1118/1.3679340http://doi.org/10.1118/1.3679340
Y. Li, P. Niemela, L. Liao et al., Selective robust optimization: A new intensity-modulated proton therapy optimization strategy. Med. Phys. 42, 4840-4847 (2015). doi: 10.1118/1.4923171http://doi.org/10.1118/1.4923171
V.T. Taasti, D. Hattu, F. Vaassen et al., Treatment planning and 4D robust evaluation strategy for proton therapy of lung tumors with large motion amplitude. Med. Phys. 48, 4425-4437 (2021). doi: 10.1002/mp.15067http://doi.org/10.1002/mp.15067
A. Meijers, A.-C. Knopf, A.P.G. Crijns et al., Evaluation of interplay and organ motion effects by means of 4D dose reconstruction and accumulation. Radiother. Oncol. 150, 268-274 (2020). doi: 10.1016/j.radonc.2020.07.055http://doi.org/10.1016/j.radonc.2020.07.055
C.O. Ribeiro, S. Visser, E.W. Korevaar et al., Towards the clinical implementation of intensity-modulated proton therapy for thoracic indications with moderate motion: Robust optimised plan evaluation by means of patient and machine specific information. Radiother. Oncol. 157, 210-218 (2021). doi: 10.1016/j.radonc.2021.01.014http://doi.org/10.1016/j.radonc.2021.01.014
W. Liu, Z. Liao, S.E. Schild et al., Impact of respiratory motion on worst-case scenario optimized intensity modulated proton therapy for lung cancers. Pract. Rad. Oncol. 5, e77-e86 (2015). doi: 10.1016/j.prro.2014.08.002http://doi.org/10.1016/j.prro.2014.08.002
N. Saito, C. Bert, N. Chaudhri et al., Speed and accuracy of a beam tracking system for treatment of moving targets with scanned ion beams. Phys. Med. Biol. 54, 4849-62 (2009). doi: 10.1088/0031-9155/54/16/001http://doi.org/10.1088/0031-9155/54/16/001
C. Graeff, Motion mitigation in scanned ion beam therapy through 4D-optimization. Phys. Medica 30, 570-577 (2014). doi: 10.1016/j.ejmp.2014.03.011http://doi.org/10.1016/j.ejmp.2014.03.011
L. Wei, S.E. Schild, J.Y. Chang et al., Exploratory study of 4D versus 3D robust optimization in intensity modulated proton therapy for lung cancer. Int. J. Radiat. Oncol. 95 523-533 (2016). doi: 10.1016/j.ijrobp.2015.11.002http://doi.org/10.1016/j.ijrobp.2015.11.002
C.P. Karger and P. Peschke, RBE and related modeling in carbon-ion therapy. Phys. Med. Biol. 63, 01TR02 (2017). doi: 10.1088/1361-6560/aa9102http://doi.org/10.1088/1361-6560/aa9102
E. Cisternas, A. Mairani, P. Ziegenhein et al., matRad - a multi-modality open source 3D treatment planning toolkit. Paper presented at Jaffray, D. (eds) World Congress on Medical Physics and Biomedical Engineering, 7-12 June 2015.
S.C. Huang, H. Zhang, K. Bai et al., Monte Carlo study of the neutron ambient dose equivalent at the heavy ion medical machine in Wuwei. Nucl. Sci. Tech. 33, 119 (2022). doi: 10.1007/s41365-022-01093-zhttp://doi.org/10.1007/s41365-022-01093-z
J. Higgins, A. Bezjak, A. Hope et al., Effect of image-guidance frequency on geometric accuracy and setup margins in radiotherapy for locally advanced lung cancer. Int. J. Radiat. Oncol. 80, 1330-1337 (2011). doi: 10.1016/j.ijrobp.2010.04.006http://doi.org/10.1016/j.ijrobp.2010.04.006
F.M. Kong, T. Ritter, D.J. Quint et al., Consideration of dose limits for organs at risk of thoracic radiotherapy: Atlas for lung, proximal bronchial tree, esophagus, spinal cord, ribs, and brachial plexus. Int. J. Radiat. Oncol. 81, 1442-1457 (2011). doi: 10.1016/j.ijrobp.2010.07.1977http://doi.org/10.1016/j.ijrobp.2010.07.1977
F. Wilcoxon, Individual comparisons by ranking methods. (Springer, New York, 1992).
C. Bert, S.O. Grözinger, E. Rietzel, Quantification of interplay effects of scanned particle beams and moving targets. Phys. Med. Biol. 53, 2253-2265 (2008). doi: 10.1088/0031-9155/53/9/003http://doi.org/10.1088/0031-9155/53/9/003
D. Richter, C. Graeff, O. Jäkel et al., Residual motion mitigation in scanned carbon ion beam therapy of liver tumors using enlarged pencil beam overlap. Radiother. Oncol. 113, 290-295 (2014). doi: 10.1016/j.radonc.2014.11.020http://doi.org/10.1016/j.radonc.2014.11.020
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution