1.Shandong Provincial Key Laboratory of Optical Astronomy and Solar‑Terrestrial Environment, School of Space Science and Physics, Institute of Space Sciences, Shandong University, Weihai 264209, China
2.WeiHai Research Institute of Industrial Technology of Shandong University, Weihai 264209, China
3.School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
4.Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China
† wangshuo_wh@sdu.edu.cn
Scan for full text
Xing-Chi Han, Shuo Wang, Hong-Yi Wu, et al. CsI-bowl: an ancillary detector for exit channel selection in
Xing-Chi Han, Shuo Wang, Hong-Yi Wu, et al. CsI-bowl: an ancillary detector for exit channel selection in
A particle detector array designed for light-charged particles, known as the CsI-bowl, was built for exit channel selection for in-beam ,γ,-ray spectroscopy experiments. This device is composed of 64 CsI(Tl) detectors, organized in a structure reminiscent of a tea-bowl. High quantum efficiency photodiodes, characterized by their minimal mass, were employed to collect scintillation light. Its design, construction, particle identification resolution, and its effectiveness in relation to exit channel selection is described in this paper. In source tests, the optimal figure of merit for the identification of ,α,-particles and ,γ,-rays using the charge comparison method was found to be 3.3 and 12.1 for CsI detectors coupled to photodiodes and avalanche photodiodes, respectively. The CsI-bowl demonstrated effectiveness in identifying particles, specifically the emission of protons and ,α,-particles in the ,58,Ni(,19,F,x,p,y,n) fusion–evaporation reaction, thereby enabling the selection of the desired exit channels.
Light charged particle detector arrayParticle identificationCharge comparison method
L.Y. Lee, The gammasphere. Nucl. Phys. A 520, c641-c655 (1990). doi: 10.1016/0375-9474(90)91181-Phttp://doi.org/10.1016/0375-9474(90)91181-P
J. Simpson, The euroball spectrometer. Z. Phys. A 358, 139-143 (1997). doi: 10.1007/s002180050290http://doi.org/10.1007/s002180050290
S. Akkoyun, A. Algora, B. Alikhani et al., AGATA — advanced gamma tracking array. Nucl. Instrum. Methods Phys. A 668, 26-58 (2012). doi: 10.1016/j.nima.2011.11.081http://doi.org/10.1016/j.nima.2011.11.081
D.G. Sarantites, P.F. Hua, M. Devlin et al., “The Microball” Design, instrumentation and response characteristics of a 4π-multidetector exit channel-selection device for spectroscopic and reaction mechanism studies with Gammasphere. Nucl. Instrum. Methods Phys. A 381, 418-432 (1996). doi: 10.1103/PhysRevC.104.044314http://doi.org/10.1103/PhysRevC.104.044314
J. Gál, G. Hegyesi, J. Molnár et al., The VXI electronics of the DIAMANT particle detector array. Nucl. Instrum. Methods Phys. A 516, 502-510 (2004). doi: 10.1016/j.nima.2003.08.158http://doi.org/10.1016/j.nima.2003.08.158
M.J Koskelo, I.J Koskelo, B. Sielaff, Comparison of analog and digital signal processing systems using pulsers. Nucl. Instrum. Methods Phys. A 422, 373-378 (1999). doi: 10.1016/S0168-9002(98)00986-3http://doi.org/10.1016/S0168-9002(98)00986-3
D.W. Luo, H.Y. Wu, Z.H. Li et al., Performance of digital data acquisition system in γ-ray spectroscopy. Nucl. Sci. Tech. 32, 79 (2021). doi: 10.1007/s41365-021-00917-8http://doi.org/10.1007/s41365-021-00917-8
S. Mitra, L. Wielopolski, G. Hendrey, Comparison of a digital and an analog signal processing system for neutron inelastic γ-ray spectrometry. Nucl. Instrum. Methods Phys. A 61, 1463-1468 (2004). doi: 10.1016/S0168-9002(98)00986-3http://doi.org/10.1016/S0168-9002(98)00986-3
C.L. Lan, X.C. Ruan, G. Liu et al., Particle identification using CsI(Tl) crystal with three different methods. Nucl. Sci. Tech. 19, 354 (2008). http://www.nst.sinap.ac.cn/thesis/112/6035033/en/http://www.nst.sinap.ac.cn/thesis/112/6035033/en/doi: 10.1016/S1001-8042(09)60018-Xhttp://doi.org/10.1016/S1001-8042(09)60018-X
R. Grzywacz, Applications of digital pulse processing in nuclear spectroscopy. Nucl. Instrum. Methods Phys. B 204, 649-659 (2003). https://www.sciencedirect.com/science/article/pii/S0168583X02021468https://www.sciencedirect.com/science/article/pii/S0168583X02021468doi: 10.1016/S0168-583X(02)02146-8http://doi.org/10.1016/S0168-583X(02)02146-8
M.S. Badawi, S. Noureddine, Y.N. Kopatch et al., Characterization of the efficiency of a cubic NaI detector with rectangular cavity for axially positioned sources. J. Instrum. 15, P02013 (2020). doi: 10.1088/1748-0221/15/02/P02013http://doi.org/10.1088/1748-0221/15/02/P02013
M.S. Badawi, M. Abd-Elzaher, A.A. Thabet et al., An empirical formula to calculate the full energy peak efficiency of scintillation detectors. Appl. Radiat. Isot. 74, 46-49 (2013). https://www.sciencedirect.com/science/article/abs/pii/S0969804312005921https://www.sciencedirect.com/science/article/abs/pii/S0969804312005921doi: 10.1016/j.apradiso.2012.12.011http://doi.org/10.1016/j.apradiso.2012.12.011
M.I. Abbas, M.S. Badawi, I.N. Ruskov et al., Calibration of a single hexagonal NaI(Tl) detector using a new numerical method based on the efficiency transfer method. Nucl. Instrum. Methods Phys. A 771, 110-114 (2015). https://www.sciencedirect.com/science/article/abs/pii/S0168900214012133https://www.sciencedirect.com/science/article/abs/pii/S0168900214012133doi: 10.1016/j.nima.2014.10.056http://doi.org/10.1016/j.nima.2014.10.056
J.C.C. van Melle, G.J. van Nieuwenhuizen, R.J. Meijer et al., Pulse shape analysis of CsI(Tl)-PD signals induced by 6–20 MeV α-particles and protons. Nucl. Instrum. Methods Phys. A 277, 584-586 (1989). https://www.sciencedirect.com/science/article/abs/pii/0168900289907912https://www.sciencedirect.com/science/article/abs/pii/0168900289907912doi: 10.1016/0168-9002(89)90791-2http://doi.org/10.1016/0168-9002(89)90791-2
S.K. Liu, Q. Yue, S.T. Lin et al., Measurement of intrinsic radioactive backgrounds from the 137Cs and U/Th chains in CsI(Tl) crystals. Chin. Phys. C, 39, 046002 (2015). doi: 10.1088/1674-1137/39/4/046002/metahttp://doi.org/10.1088/1674-1137/39/4/046002/meta
E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk et al., High-energy-resolution scintillator: Ce3+ activated LaBr3. Appl. Phys. Lett. 79, 1573-1575 (2001). doi: 10.1063/1.1385342http://doi.org/10.1063/1.1385342
H. Cheng, B.H. Sun, L.H. Zhu et al., Intrinsic background radiation of LaBr3(Ce) detector via coincidence measurements and simulations. Nucl. Sci. Tech. 31 99 (2020). doi: 10.1007/s41365-020-00812-8http://doi.org/10.1007/s41365-020-00812-8
W. Lu, L. Wang, Y. Yuan et al., Monte Carlo simulation for performance evaluation of detector model with a monolithic LaBr3(Ce) crystal and SiPM array for γ radiation imaging. Nucl. Sci. Tech. 33, 107 (2022). doi: 10.1007/s41365-022-01081-3http://doi.org/10.1007/s41365-022-01081-3
S. Usuda, A. Mihara, H. Abe, Rise time spectra of α and β(γ) rays from solid and solution sources with several solid scintillators. Nucl. Instrum. Methods Phys. A 321, 247-253 (1992). https://www.sciencedirect.com/science/article/abs/pii/016890029290396Lhttps://www.sciencedirect.com/science/article/abs/pii/016890029290396Ldoi: 10.1016/0168-9002(92)90396-Lhttp://doi.org/10.1016/0168-9002(92)90396-L
E.V. Sysoeva, V.A. Tarasov, O.V. Zelenskaya et al., The study of α/γ ratio for inorganic scintillation detectors. Nucl. Instrum. Methods Phys. A 414, 274 (1998). https://www.sciencedirect.com/science/article/pii/S0168900298000114https://www.sciencedirect.com/science/article/pii/S0168900298000114doi: 10.1016/S0168-9002(98)00011-4http://doi.org/10.1016/S0168-9002(98)00011-4
R.H. Bartram, A. Lempicki, Efficiency of electron-hole pair production in scintillators. J. Lumin. 68, 225-240 (1996). https://www.sciencedirect.com/science/article/pii/0022231396000269https://www.sciencedirect.com/science/article/pii/0022231396000269doi: 10.1016/0022-2313(96)00026-9http://doi.org/10.1016/0022-2313(96)00026-9
R.F. Chen, H.S. Xu, R.R. Fan et al., Property measurement of the CsI (Tl) crystal prepared at IMP. Chin. Phys. C 32, 135 (2008). doi: 10.1088/1674-1137/32/2/012http://doi.org/10.1088/1674-1137/32/2/012
D.X. Wang, C.J. Lin, L. Yang et al., Compact 16-channel integrated charge-sensitive preamplifier module for silicon strip detectors. Nucl. Sci. Tech. 31, 48 (2020). doi: 10.1007/s41365-020-00755-0http://doi.org/10.1007/s41365-020-00755-0
XIA LLC, https://www.xia.comhttps://www.xia.com/https://www.xia.comhttps://www.xia.com/
ROOT Data Analysis Framework, https://root.cern.chhttps://root.cern.ch//https://root.cern.chhttps://root.cern.ch//
W. Skulski, M. Momayezi, Particle identification in CsI(Tl) using digital pulse shape analysis. Nucl. Instrum. Methods Phys. A 458, 759-771 (2001). doi: 10.1016/S0168-9002(00)00938-4http://doi.org/10.1016/S0168-9002(00)00938-4
Y. Kaschuck, B. Esposito, Neutron/γ-ray digital pulse shape discrimination with organic scintillators. Nucl. Instrum. Methods Phys. A 551, 420-428 (2005). https://www.sciencedirect.com/science/article/abs/pii/S0168900205012969https://www.sciencedirect.com/science/article/abs/pii/S0168900205012969doi: 10.1016/j.nima.2005.05.071http://doi.org/10.1016/j.nima.2005.05.071
F. Amorini, C. Boiano, G. Cardella et al., Investigation of the dependence of CsI(Tl) scintillation time constants and intensities on particle’s energy, charge and mass through direct fitting of digitized waveforms. IEEE Trans. Nucl. Sci. 59, 1772 (2012). https://ieeexplore.ieee.org/abstract/document/6236256https://ieeexplore.ieee.org/abstract/document/6236256doi: 10.1109/TNS.2012.2201499http://doi.org/10.1109/TNS.2012.2201499
M. Bendel, R. Gernhauser, W.F. Henning et al., RPID — A new digital particle identification algorithm for CsI(Tl) scintillators. Eur. Phys. J. A 49, 69 (2013). doi: 10.1140/epja/i2013-13069-8http://doi.org/10.1140/epja/i2013-13069-8
M. Moszyński, D. Wolski, T. Ludziejewski et al., Particle identification by digital charge comparison method applied to CSl(TI) crystal coupled to photodiode. Nucl. Instrum. Methods Phys. A 336, 587-590 (1993). https://www.sciencedirect.com/science/article/abs/pii/016890029391267Qhttps://www.sciencedirect.com/science/article/abs/pii/016890029391267Qdoi: 10.1016/0168-9002(93)91267-Qhttp://doi.org/10.1016/0168-9002(93)91267-Q
Z. Zuo, H.-R. Liu, Y.-C. Yan, et al., Adaptability of n-γ discrimination and filtering methods based on plastic scintillation. Nucl. Sci. Tech. A 32, 28 (2021). doi: 10.1007/s41365-021-00917-8http://doi.org/10.1007/s41365-021-00917-8
F. Benrachi, B. Chambon, B. Cheynis et al., Investigation of the performance of CsI(Tl) for charged particle identification by pulse-shape analysis. Nucl. Instrum. Methods Phys. A 281, 137-142 (1989). https://www.sciencedirect.com/science/article/abs/pii/0168900289912254https://www.sciencedirect.com/science/article/abs/pii/0168900289912254doi: 10.1016/0168-9002(89)91225-4http://doi.org/10.1016/0168-9002(89)91225-4
J. Williams, C. Andreoiu, G.C. Ball et al., The CsI ball ancillary detector array for TIP and TIGRESS at TRIUMF. Nucl. Instrum. Methods Phys. A 939, 1-9 (2019). https://www.sciencedirect.com/science/article/pii/S0168900219307259https://www.sciencedirect.com/science/article/pii/S0168900219307259doi: 10.1016/j.nima.2019.05.069http://doi.org/10.1016/j.nima.2019.05.069
R.A. Bark, M. Lipoglavšek, S.M. Maliage et al., Aspects of nuclear physics research at iThemba LABS, South Africa. J. Phys. G 31, S1747 (2005). doi: 10.1088/0954-3899/31/10/066/http://doi.org/10.1088/0954-3899/31/10/066/
A. Gavron, Statistical model calculations in heavy ion reactions. Phys. Rev. C 21, 230 (1980). doi: 10.1103/PhysRevC.21.230http://doi.org/10.1103/PhysRevC.21.230
O. Tarasov, D. Bazin, LISE++: Radioactive beam production with in-flight separators. Nucl. Instrum. Methods Phys. B 226, 4657-4664 (2008). doi: 10.1016/j.nimb.2008.05.110http://doi.org/10.1016/j.nimb.2008.05.110
R. Palit, H.C. Jain, P.K. Joshi et al., Shape coexistence in 72Se. Phys. Rev. C 63, 024313 (2001). doi: 10.1103/PhysRevC.63.024313http://doi.org/10.1103/PhysRevC.63.024313
J. Döring, G.D. Johns, M.A. Riley et al., Band structures and alignment properties in 74Se. Phys. Rev. C 57, 6 (1998). doi: 10.1103/PhysRevC.57.2912http://doi.org/10.1103/PhysRevC.57.2912
F.G.A. Quarati, P. Dorenbos, J. van der Biezen et al., Scintillation and detection characteristics of high-sensitivity CeBr3 gamma-ray spectrometers. Nucl. Instrum. Methods Phys. A 719, 596-604 (2013). https://www.sciencedirect.com/science/article/pii/S0168900213011297https://www.sciencedirect.com/science/article/pii/S0168900213011297doi: 10.1016/j.nima.2013.08.005http://doi.org/10.1016/j.nima.2013.08.005
J.M. Regis, G.S. Simpson, A. Blanc et al., Germanium-gated γ-γ fast timing of excited states in fission fragments using the EXILL&FATIMA spectrometer. Nucl. Instrum. Methods Phys. A 763, 210-220 (2014). doi: 10.1016/j.nima.2014.06.004http://doi.org/10.1016/j.nima.2014.06.004
D. Bucurescu, I. Cata-Danil, G. Ciocan et al., The ROSPHERE γ-ray spectroscopy array. Nucl. Instrum. Methods Phys. A 837, 1-10 (2016). https://www.sciencedirect.com/science/article/abs/pii/S0168900216308798https://www.sciencedirect.com/science/article/abs/pii/S0168900216308798doi: 10.1016/j.nima.2016.08.052http://doi.org/10.1016/j.nima.2016.08.052
C. Mihai, A.A. Pasternak, D. Filipescu et al., Side feeding patterns and nuclear lifetime determinations by the Doppler shift attenuation method in (α,nγ) reactions. Phys. Rev. C 81, 034314 (2010). doi: 10.1103/PhysRevC.81.034314http://doi.org/10.1103/PhysRevC.81.034314
A. Dewald, S. Harissopulos, P. von Brentano, The differential plunger and the differential decay curve method for the analysis of recoil distance Doppler-shift data. Z. Phys. A 334, 163-175 (1989). doi: 10.1007/BF01294217http://doi.org/10.1007/BF01294217
N. Marginean, D.L. Balabanski, D. Bucurescu et al., TIn-beam measurements of sub-nanosecond nuclear lifetimes with a mixed array of HPGe and LaBr3:Ce detectors. Eur. Phys. J. A 46, 329-336 (2010). doi: 10.1140/epja/i2010-11052-7http://doi.org/10.1140/epja/i2010-11052-7
T. Teranishi, Y. Ueno, M. Osada et al., Pulse shape analysis of signals from SiPM-based CsI(Tl) detectors for low-energy protons: Saturation correction and particle identification. Nucl. Instrum. Methods Phys. A 989, 164967 (2021). https://www.sciencedirect.com/science/article/pii/S0168900220313644https://www.sciencedirect.com/science/article/pii/S0168900220313644doi: 10.1016/j.nima.2020.164967http://doi.org/10.1016/j.nima.2020.164967
Y. Sun, Z.-Y. Sun, Y.-H. Yu et al., Temperature dependence of CsI:Tl coupled to a PIN photodiode and a silicon photomultiplier. Nucl. Sci. Tech. 30 27 (2019). doi: 10.1007/s41365-019-0551-0http://doi.org/10.1007/s41365-019-0551-0
0
Views
3
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution