1.Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
2.University of Science and Technology of China, Hefei 230026, China
3.Institute of Energy, Hefei Comprehensive National Science Center (Anhui Energy Laboratory), Hefei 230031, China
* gqzhong@ipp.ac.cn
Scan for full text
Wei-Kun Chen, Li-Qun Hu, Guo-Qiang Zhong, et al. Study on the gamma-rays and neutrons energy response optimization of a scintillating fiber detector for EAST with Geant4. [J]. Nuclear Science and Techniques 34(9):134(2023)
Wei-Kun Chen, Li-Qun Hu, Guo-Qiang Zhong, et al. Study on the gamma-rays and neutrons energy response optimization of a scintillating fiber detector for EAST with Geant4. [J]. Nuclear Science and Techniques 34(9):134(2023) DOI: 10.1007/s41365-023-01290-4.
A new scintillating fiber detector inside magnetic shielding tube was designed and assembled for use in the next round of fusion experiments in the experimental advanced superconducting tokamak to provide D–T neutron yield with time resolution. In this study, Geant4 simulations were used to obtain the pulse-height spectra for ideal signals produced when detecting neutrons and gamma rays of multiple energies. One of the main sources of interference was found to be low-energy neutrons below 10,-5, MeV, which can generate numerous secondary particles in the detector components, such as the magnetic shielding tube, leading to high-amplitude output signals. To address this issue, a compact thermal neutron shield containing a 1 mm Cd layer outside the magnetic shielding tube and a 5 mm inner Pb layer was specifically designed. Adverse effects on the measurement of fast neutrons and the shielding effect on gamma rays were considered. This can suppress the height of the signals caused by thermal neutrons to a level below the height corresponding to neutrons above 4 MeV because the yield of the latter is used for detector calibration. In addition, the detector has relatively flat sensitivity curves in the fast neutron region, with the intrinsic detection efficiencies (IDEs) of approximately 40%. For gamma rays with energies that are not too high (,<, 8 MeV), the IDEs of the detector are only approximately 20%, whereas for gamma rays below 1 MeV, the response curve cuts off earlier in the low-energy region, which is beneficial for avoiding counting saturation and signal accumulation.
Sci-Fi detectorD–T fusion neutronthermal neutron shieldenergy responseGeant4
K. Ogawa, M. Isobe, S. Sangaroon et al., Time-resolved secondary triton burnup 14 MeV neutron measurement by a new scintillating fiber detector in middle total neutron emission ranges in deuterium large helical device plasma experiments. AAPPS Bull. 31, 20 (2021). doi: 10.1007/s43673-021-00023-2http://doi.org/10.1007/s43673-021-00023-2
J.R. Smith, R.K. Fisher, J.S. Leffler et al., Time-resolved 14-MeV neutron detector for triton confinement studies. Rev. Sci. Instrum. 57, 1780-1782 (1986). doi: 10.1063/1.1139180http://doi.org/10.1063/1.1139180
H.H. Duong, W.W. Heidbrink, Confinement of fusion produced MeV ions in the DIII-D TOKAMAK. Nucl. Fusion 33, 211-224 (1993). doi: 10.1088/0029-5515/33/2/i03http://doi.org/10.1088/0029-5515/33/2/i03
P. Batistoni, M. Martone, M. Pillon et al., Measurements of triton burnup in low Q discharges in the FT TOKAMAK. Nucl. Fusion 27, 1040-1043 (1987).doi: 10.1088/0029-5515/27/6/017http://doi.org/10.1088/0029-5515/27/6/017.
P. Batistoni, E. Bittoni, M. Haegi, Triton confinement as inferred from fusion from fusion produced neutron measurements in the FT TOKAMAK. Nucl. Fusion 29, 673-679 (1989). doi: 10.1088/0029-5515/29/4/011http://doi.org/10.1088/0029-5515/29/4/011
G.A. Wurden, R.E. Chrien, C.W. Barnes et al., Scintillating‐fiber 14 MeV neutron detector on TFTR during DT operation. Rev. Sci. Instrum. 66, 901-903 (1995). doi: 10.1063/1.1146200http://doi.org/10.1063/1.1146200
J.S. McCauley, J.D. Strachan, Measurement of DT neutron emission from TFTR with helium‐4 proportional recoil counters. Rev. Sci. Instrum. 63, 4536-4538 (1992). doi: 10.1063/1.1143712http://doi.org/10.1063/1.1143712
C.W. Barnes, H.S. Bosch, H.W. Hendel et al., Triton burnup measurements and calculations on TFTR. Nucl. Fusion 38, 597-618 (1998). doi: 10.1088/0029-5515/38/4/310http://doi.org/10.1088/0029-5515/38/4/310
J. Kallne, P. Batistoni, G. Gorini et al., Triton burnup measurements in JET using a neutron-activation techniques. Nucl. Fusion 28, 1291-1297 (1988). doi: 10.1088/0029-5515/28/7/012http://doi.org/10.1088/0029-5515/28/7/012
G. Nemtsev, V. Amosov, S. Meshchaninov et al., Study of the triton-burnup process in different JET scenarios using neutron monitor based on CVD diamond. Rev. Sci. Instrum. 87, 11D835 (2016). doi: 10.1063/1.4962190http://doi.org/10.1063/1.4962190
F.B. Marcus, J.M. Adams, B. Balet et al., Neutron emission profile measurements during the 1st tritium experiments at JET. Nucl. Fusion 33, 1325-1344 (1993). doi: 10.1088/0029-5515/33/9/i08http://doi.org/10.1088/0029-5515/33/9/i08
W. Ullrich, H.S. Bosch, F. Hoenen, Application of a Si-diode detector for fusion product measurements in ASDEX Upgrade. Rev. Sci. Instrum. 68, 4434-4438 (1997). doi: 10.1063/1.1148410http://doi.org/10.1063/1.1148410
J. Jo, M.S. Cheon, K.-J. Chung et al., Sample design and gamma-ray counting strategy of neutron activation system for triton burnup measurements in KSTAR. Fusion Eng. Des. 109-111, 545-548 (2016). doi: 10.1016/j.fusengdes.2016.02.058http://doi.org/10.1016/j.fusengdes.2016.02.058
J. Jo, M. Cheon, J.Y. Kim et al., Triton burnup measurements in KSTAR using a neutron activation system. Rev. Sci. Instrum. 87, 11D828 (2016). doi: 10.1063/1.4961273http://doi.org/10.1063/1.4961273
J. Jo, M. Cheon, J. Kim et al., Initial operation results of NE213 scintillation detector for time-resolved measurements on triton burnup in KSTAR. Rev. Sci. Instrum. 89, 10I118 (2018). doi: 10.1063/1.5039308http://doi.org/10.1063/1.5039308
N. Pu, T. Nishitani, K. Ogawa et al., Scintillating fiber detectors for time evolution measurement of the triton burnup on the large helical device. Rev. Sci. Instrum. 89, 10I105 (2018). doi: 10.1063/1.5035290http://doi.org/10.1063/1.5035290
N. Pu, T. Nishitani, M. Isobe et al., Evaluation of scintillating-fiber detector response for 14 MeV neutron measurement. J. Instrum. 14, P10015 (2019). doi: 10.1088/1748-0221/14/10/p10015http://doi.org/10.1088/1748-0221/14/10/p10015
K. Ogawa, M. Isobe, H. Nuga et al., A study of beam ion and deuterium–deuterium fusion-born triton transports due to energetic particle-driven magnetohydrodynamic instability in the large helical device deuterium plasmas. Nucl. Fusion 61, 096035 (2021). doi: 10.1088/1741-4326/ac0d8ahttp://doi.org/10.1088/1741-4326/ac0d8a
K. Ogawa, M. Isobe, T. Nishitani et al., Time-resolved triton burnup measurement using the scintillating fiber detector in the Large Helical Device. Nucl. Fusion 58, 034002(2018). doi: 10.1088/1741-4326/aaa585http://doi.org/10.1088/1741-4326/aaa585
T. Nishitani, M. Isobe, G.A. Wurden et al., Triton burnup measurements using scintillating fiber detectors on JT-60U. Fusion Eng. Des. 34-35, 563-566 (1997). doi: 10.1016/s0920-3796(96)00621-7http://doi.org/10.1016/s0920-3796(96)00621-7
T. Nishitani, M. Hoek, H. Harano et al., Triton burn-up study in JT-60U. Plasma Phys. Controlled Fusion 38, 355-364 (1996). doi: 10.1088/0741-3335/38/3/010http://doi.org/10.1088/0741-3335/38/3/010
M. Hoek, T. Nishitani, M. Carlsson et al., Triton burnup measurements by neutron activation at JT-60U. Nucl. Instrum. Methods Phys. Res., Sect. A 368, 804-814 (1996). doi: 10.1016/0168-9002(95)00667-2http://doi.org/10.1016/0168-9002(95)00667-2
S. Wu, An overview of the EAST project. Fusion Eng. Des. 82, 463-471 (2007). doi: 10.1016/j.fusengdes.2007.03.012http://doi.org/10.1016/j.fusengdes.2007.03.012
K. Li, L. Hu, G. Zhong et al., Development of neutron activation system on EAST. Rev. Sci. Instrum. 91, 013503 (2020). doi: 10.1063/1.5126746http://doi.org/10.1063/1.5126746
B. Hong, G.Q. Zhong, L.Q. Hu et al., Diagnostic of fusion neutrons on EAST Tokamak using 4H-SiC detector. IEEE Trans. Nucl. Sci. 69, 639-644 (2022). doi: 10.1109/tns.2022.3146180http://doi.org/10.1109/tns.2022.3146180
W.-K. Chen, L.-Q. Hu, G.-Q. Zhong et al., Optimization study and design of scintillating fiber detector for D-T neutron measurements on EAST with Geant4. Nucl. Sci. Tech. 33, 139 (2022). doi: 10.1007/s41365-022-01123-whttp://doi.org/10.1007/s41365-022-01123-w
Atlas of Neutron Capture Cross Sections. https://www-nds.iaea.org/ngatlas2/https://www-nds.iaea.org/ngatlas2/
N. Metropolis, S. Ulam, The Monte Carlo method. J. Am. Stat. Assoc. 44, 335-341 (1949). doi: 10.1080/01621459.1949.10483310http://doi.org/10.1080/01621459.1949.10483310
Kuraray scintillation fiber. http://kuraraypsf.jp/psf/index.htmlhttp://kuraraypsf.jp/psf/index.html
S. Agostinelli, J. Allison, K. Amako et al., Geant4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250-303 (2003). doi: 10.1016/s0168-9002(03)01368-8http://doi.org/10.1016/s0168-9002(03)01368-8
Z. Cheng, Y. Yu, G. Li et al., Measurement of attenuation length and light yield of plastic scintillating fiber with silicon photomultiplier. At. Energy Sci. Technol. 54, 340-347 (2020). doi: 10.7538/yzk.2019.youxian.0221http://doi.org/10.7538/yzk.2019.youxian.0221 (in Chinese)
R.J. Zhou, G.Q. Zhong, L.Q. Hu et al., Development of gamma ray spectrometer with high energy and time resolutions on EAST tokamak. Rev. Sci. Instrum. 90, 123510 (2019). doi: 10.1063/1.5120843http://doi.org/10.1063/1.5120843
M. Xu, G. Zhong, B. Hao et al., Excitation of RSAEs during sawteeth-like oscillation in EAST. Chin. Phys. Lett. 38, 085201 (2021). doi: 10.1088/0256-307x/38/8/085201http://doi.org/10.1088/0256-307x/38/8/085201
Z. Xu, Z.-W. Wu, L. Zhang et al., Tungsten control in type-I ELMy H-mode plasmas on EAST. Nucl. Sci. Tech. 32, 95 (2021). doi: 10.1007/s41365-021-00929-4http://doi.org/10.1007/s41365-021-00929-4
J.-F. Wang, Y.-Y. Li, B. Wu et al., Numerical and Experimental Evaluation of Shine-Through Loss and Beam Heating Due to Neutral Beam Injection on EAST. Chin. Phys. Lett. 38, 055203 (2021). doi: 10.1088/0256-307x/38/5/055203http://doi.org/10.1088/0256-307x/38/5/055203
X. Zhang, C. Zhou, X. Zou et al., Edge localized modes suppression via edge E × B velocity shear induced by RF sheath of ion cyclotron resonance heating in EAST. Sci. China: Phys., Mech. Astron. 65, 235211 (2022). doi: 10.1007/s11433-021-1817-8http://doi.org/10.1007/s11433-021-1817-8
I. Antcheva, M. Ballintijn, B. Bellenot et al., ROOT — A C++ framework for petabyte data storage, statistical analysis and visualization. Comput. Phys. Commun. 180, 2499-2512 (2009). doi: 10.1016/j.cpc.2009.08.005http://doi.org/10.1016/j.cpc.2009.08.005
0
Views
3
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution