1.Key Laboratory of Nuclear Physics and Ion‑Beam Application (MOE), Institute of Modern Physics, Fudan University, Shanghai 200433, China
2.University of California, Los Angeles, CA 90095, USA
† malong@fudan.edu.cn
‡ chenjinhui@fudan.edu.cn
Scan for full text
Wei Chen, Long Ma, Jin-Hui Chen, et al. Gamma-, neutron-, and muon-induced environmental background simulations for 100Mo-based bolometric double-beta decay experiment at Jinping Underground Laboratory. [J]. Nuclear Science and Techniques 34(9):135(2023)
Wei Chen, Long Ma, Jin-Hui Chen, et al. Gamma-, neutron-, and muon-induced environmental background simulations for 100Mo-based bolometric double-beta decay experiment at Jinping Underground Laboratory. [J]. Nuclear Science and Techniques 34(9):135(2023) DOI: 10.1007/s41365-023-01299-9.
The sensitivity of an experiment to detect the Majorana neutrino mass via neutrinoless double beta decay (0,νββ,) strongly depends on the rate of background events that can mimic this decay. One major source of this background is the radioactive emissions from the laboratory environment. In our study, we focused on assessing the background contributions from environmental gamma rays, neutrons, and underground muons to the Jinping bolometric demonstration experiment. This experiment uses an array of lithium molybdate crystal bolometers to probe the potential 0,νββ, decay of the ,100,Mo isotope at the China Jinping Underground Laboratory. We also evaluated the shielding effectiveness of the experimental setup through an attenuation study. Our simulations indicate that the combined background from environmental gamma rays, neutrons, and muons in the relevant ,100,Mo 0,νββ, Q-value region can be reduced to approximately 0.003 cts/kg/keV/yr.
Neutrinoless double beta decayGeant4CUPID
S.M. Bilenky, C. Giunti, Neutrinoless double-beta decay: A probe of physics beyond the Standard Model. Int. J. Mod. Phys. A 30, 1530001 (2015). doi: 10.1142/S0217751X1530001Xhttp://doi.org/10.1142/S0217751X1530001X
D.Q. Adams, C. Alduino, K. Alfonso et al. (CUORE collaboration), Improved limit on neutrinoless double-beta decay in 130Te with CUORE. Phys. Rev. Lett. 124, 122501 (2020). doi: 10.1103/PhysRevLett.124.122501http://doi.org/10.1103/PhysRevLett.124.122501
J.B. Albert, G. Anton, I. Badhrees et al., (EXO collaboration), Search for neutrinoless double-beta decay with the upgraded EXO-200 detector. Phys. Rev. Lett. 120, 072701 (2018). doi: 10.1103/PhysRevLett.120.072701http://doi.org/10.1103/PhysRevLett.120.072701
M. Agostini, A.M. Bakalyarov, M. Balata et al. (GERDA collaboration), Improved limit on neutrinoless double-β decay of 76Ge from GERDA phase II. Phys. Rev. Lett. 120, 132503 (2018). doi: 10.1103/PhysRevLett.120.132503http://doi.org/10.1103/PhysRevLett.120.132503
A. Gando, Y. Gando, T. Hachiya et al. (KamLAND-Zen collaboration), Search for Majorana neutrinos near the inverted mass hierarchy region with KamLAND-Zen. Phys. Rev. Lett. 117, 082503 (2016). doi: 10.1103/PhysRevLett.117.082503http://doi.org/10.1103/PhysRevLett.117.082503
M. Biassoni, O. Cremonesi, Search for neutrino-less double beta decay with thermal detectors. Prog. Part. Nucl. Phys. 114, 103803 (2020). doi: 10.1016/j.ppnp.2020.103803http://doi.org/10.1016/j.ppnp.2020.103803
W.R. Armstrong, et al. (The CUPID Interest Group), arXiv:1907.09376
E. Armengaud, C. Augier, A.S. Barabash et al. (CUPID collaboration), New limit for neutrinoless double-beta decay of 100Mo from the CUPID-Mo experiment. Phys. Rev. Lett. 126, 181802 (2020). doi: 10.1103/PhysRevLett.126.181802http://doi.org/10.1103/PhysRevLett.126.181802
E. Armengaud, C. Augier, A. Barabash et al., Precise measurement of 2νββ decay of 100Mo with the CUPID-Mo detection technology. Eur. Phys. J. C 80, 674 (2020). doi: 10.1140/epjc/s10052-020-8203-4http://doi.org/10.1140/epjc/s10052-020-8203-4
A. Alessandrello, C. Arpesella, C. Brofferio et al., Measurements of internal radioactive contamination in samples of Roman lead to be used in experiments on rare events. Nucl. Instrum. Meth. Phys. Res. B 142, 163-172 (1998). doi: 10.1016/S0168-583X(98)00279-1http://doi.org/10.1016/S0168-583X(98)00279-1
A. Luqman, D.H. Ha, J.J. Lee et al.,Simulations of background sources in AMoRE-I experiment. Nucl. Instrum. Meth. Phys. Res. A 855, 140-147 (2017). doi: 10.1016/j.nima.2017.01.070http://doi.org/10.1016/j.nima.2017.01.070
F. Alessandria, R. Ardito, D.R. Artusa et al. (CUORE collaboration), Validation of techniques to mitigate copper surface contamination in CUORE. Astroparticle Physics 45, 13-22 (2013). doi: 10.1016/j.astropartphys.2013.02.005http://doi.org/10.1016/j.astropartphys.2013.02.005
H.W. Bae, E.J. Jeon, Y.D. Kim et al., Neutron and muon-induced background studies for the AMoRE double-beta decay experiment. Astroparticle Physics 114, 60-67 (2020). doi: 10.1016/j.astropartphys.2019.06.006http://doi.org/10.1016/j.astropartphys.2019.06.006
C. Alduino, K. Alfonso, D.R. Artusa et al. (CUORE collaboration), The projected background for the CUORE experiment. Eur. Phys. J. C 77, 543 (2017). doi: 10.1140/epjc/s10052-017-5080-6http://doi.org/10.1140/epjc/s10052-017-5080-6
W. Chen, L. Ma, J.H. Chen et al., Cosmogenic background study for a 100Mo-based bolometric demonstration experiment at China JinPing underground Laboratory. Eur. Phys. J. C 82, 549 (2022). doi: 10.1140/epjc/s10052-022-10501-yhttp://doi.org/10.1140/epjc/s10052-022-10501-y
P.N. Peplowski, J.T. Wilson et al., Cosmogenic radionuclide production modeling with Geant4: Experimental benchmarking and application to nuclear spectroscopy of asteroid (16) Psyche. Nucl. Instrum. Meth. Phys. Res. B 446, 43-57 (2019). doi: 10.1016/j.nimb.2019.03.023http://doi.org/10.1016/j.nimb.2019.03.023
F. Bellini, C. Bucci, S. Capelli et al., Monte Carlo evaluation of the external gamma, neutron and muon induced background sources in the CUORE experiment. Astroparticle Physics 33, 169-174 (2010). doi: 10.1016/j.astropartphys.2010.01.004http://doi.org/10.1016/j.astropartphys.2010.01.004
M. Haffke, L. Baudis, T. Bruch et al., Background measurements in the Gran Sasso Underground Laboratory. Nucl. Instrum. Meth. Phys. Res. A 643, 36-41 (2011). doi: 10.1016/j.nima.2011.04.027http://doi.org/10.1016/j.nima.2011.04.027
J. Allison, K. Amako, J. Apostolakis et al., Recent developments in Geant4. Nucl. Instrum. Methods A, 835, 186 (2016). doi: 10.1016/j.nima.2016.06.125http://doi.org/10.1016/j.nima.2016.06.125
S. Agostinelli et al., Geant4—a simulation toolkit.Nucl. Instrum Methods A 506, 250 (2003)
D.-J. Zhao, S. Feng, P.-J. Cheng et al., Conceptual design of a Cs2LiLaBr6 scintillator-based neutron total cross section spectrometer on the back-n beam line at CSNS. Nucl. Sci. Tech. 34, 3 (2023). doi: 10.1007/s41365-022-01152-5http://doi.org/10.1007/s41365-022-01152-5
L.-H. Zhou, S.-Y. Cao, T. Sun et al., A refined Monte Carlo code for low-energy electron emission from gold material irradiated with sub-keV electrons. Nucl. Sci. Tech. 34(4), 54 (2023). doi: 10.1007/s41365-023-01204-4http://doi.org/10.1007/s41365-023-01204-4
Q.D. Hu, H. Ma, Z. Zeng et al., Neutron background measurements at China Jinping underground laboratory with a Bonner multi-sphere spectrometer. Nucl. Instrum. Meth. Phys. Res. A 859, 37-40 (2017). doi: 10.1016/j.nima.2017.03.048http://doi.org/10.1016/j.nima.2017.03.048
Y. Elmahroug, B. Tellili and C. Souga, International Journal of Physics and Research 3(1), 33-40 (2013)
D. Venkata Subramanian, A. Haridas, D. Sunil Kumar, Indian Journal of Pure and Applied Physics 56, 583-586 (2018)
H. Ma, Z. She, W.H. Zeng et al., In-situ gamma-ray background measurements for next generation CDEX experiment in the China Jinping Underground Laboratory. Astroparticle Physics 128, 102560 (2021). doi: 10.1016/j.astropartphys.2021.102560http://doi.org/10.1016/j.astropartphys.2021.102560
Z. Zeng, J. Su, H. Ma et al., Journal of Radioanalytical and Nuclear Chemistry 301(2) (2014)
Y. P. Shen, J. Su, W. P. Liu et al., Measurement of γ detector backgrounds in the energy range of 3-8 MeV at Jinping underground laboratory for nuclear astrophysics. Science China Physics, Mechanics and Astronomy 60(10),102022 (2017). doi: 10.1007/s11433-017-9049-3http://doi.org/10.1007/s11433-017-9049-3
Q. Yue, C.J. Tang, J.P. Cheng et al., A Monte Carlo study for the shielding of γ backgrounds induced by radionuclides for CDEX. Chinese Phys. C 35, 282 (2011). doi: 10.1088/1674-1137/35/3/013http://doi.org/10.1088/1674-1137/35/3/013
R.M.J. Li, S.K. Liu, S.T. Lin et al., Identification of anomalous fast bulk events in a p-type point-contact germanium detector. Nucl. Sci. Tech. 33(5), 57(2022). doi: 10.1007/s41365-022-01041-xhttp://doi.org/10.1007/s41365-022-01041-x
B. Schmidt et al., First data from the CUPID-Mo neutrinoless double beta decay experiment.J. Phys. Conf. Ser. 1468(1), 012129 (2020)
B. Aharmim, S.N. Ahmed, A.E. Anthony et al., Cosmogenic neutron production at the Sudbury Neutrino Observatory. Phys. Rev. D 100, 112005 (2019). doi: 10.1103/PhysRevD.100.112005http://doi.org/10.1103/PhysRevD.100.112005
V. A. Kudryavtsev, N.J.C. Spooner, J. E. McMillan, Simulations of muon-induced neutron flux at large depths underground. arXiv:hep-ex/0303007v1 (2003)
Z.M. Zeng, H. Gong, Q. Yue et al., Thermal neutron background measurement in CJPL. Nucl. Instrum. Meth. A 804, 108-112 (2015). doi: 10.1016/j.nima.2015.09.043http://doi.org/10.1016/j.nima.2015.09.043
G. Bruno, W. Fulgione, Flux measurement of fast neutrons in the Gran Sasso underground laboratory. Eur. Phys. J. C 79, 747 (2019). doi: 10.1140/epjc/s10052-019-7247-9http://doi.org/10.1140/epjc/s10052-019-7247-9
Q. H. Wang, A. Abdukerim, W. Chen et al., An improved evaluation of the neutron background in the PandaX-II experiment. Science China: Physics, Mechanics and Astronomy 63(3), 231011 (2020). doi: 10.1007/s11433-019-9603-9http://doi.org/10.1007/s11433-019-9603-9
Q. Du, S.T. Lin, S.K. Liu et al., Measurement of the fast neutron background at the China Jinping Underground Laboratory. Nucl. Instrum. Meth. Phys. Res. A 889, 105-112 (2018). doi: 10.1016/j.nima.2018.01.098http://doi.org/10.1016/j.nima.2018.01.098
H. Wulandari, J. Jochum, W. Rau et al., Neutron flux at the Gran Sasso underground laboratory revisited. Astroparticle Physics 22, 313-322 (2004). doi: 10.1016/j.astropartphys.2004.07.005http://doi.org/10.1016/j.astropartphys.2004.07.005
E. Andreotti, C. Arnaboldi, IIIF.T. Avignone et al., Muon-induced backgrounds in the CUORICINO experiment. Astroparticle Physics 34, 18-24 (2010). doi: 10.1016/j.astropartphys.2010.04.004http://doi.org/10.1016/j.astropartphys.2010.04.004
Thomas K. Gaisser, Cosmic Rays and Particle Physics (Cambridge University Press, New York, 1990), p. 71.
D.M. Mei and A. Hime, Muon-induced background study for underground laboratories. Phys. Rev. D 73, 053004 (2006). doi: 10.1103/PhysRevD.73.053004http://doi.org/10.1103/PhysRevD.73.053004
X. H. Hu, Simulation of cosmic ray background at CJPL, Master’s Dissertation, Nankai University, 2013
Z.Y. Guo, L. B. Peters, S. M. Chen et al., Muon flux measurement at China Jinping Underground Laboratory. Chinese Phys. C 45, 025001 (2021). doi: 10.1088/1674-1137/abccaehttp://doi.org/10.1088/1674-1137/abccae
H. Arslan and M. Bektasoglu, Advances in High Energy Physics 2013, 391573
0
Views
6
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution