1.Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, Taiyuan 030051, China
2.School of Medicine Management, Shanxi University of Chinese Medicine, Taiyuan 030619, China
† good0806@sina.cn
Scan for full text
Li-Yuan Zhang, Zhi-Guo Gui, Peng-Cheng Zhang, et al. Aperture shape optimization in intensity-modulated radiation therapy planning. [J]. Nuclear Science and Techniques 34(9):140(2023)
Li-Yuan Zhang, Zhi-Guo Gui, Peng-Cheng Zhang, et al. Aperture shape optimization in intensity-modulated radiation therapy planning. [J]. Nuclear Science and Techniques 34(9):140(2023) DOI: 10.1007/s41365-023-01300-5.
The gradient element of the aperture gradient map is utilized directly to generate the aperture shape without modulation. This process can be likened to choosing the direction of negative gradient descent for the generic aperture shape optimization. The negative-gradient descent direction is more suitable under local conditions and has a slow convergence rate. To overcome these limitations, this study introduced conjugate gradients into aperture shape optimization based on gradient modulation. First, the aperture gradient map of the current beam was obtained for the proposed aperture shape optimization method, and the gradients of the aperture gradient map were modulated using conjugate gradients to form a modulated gradient map. The aperture shape was generated based on the modulated gradient map. The proposed optimization method does not change the optimal solution of the original optimization problem but changes the iterative search direction when generating the aperture shape. The performance of the proposed method was verified using cases of head and neck cancer, and prostate cancer. The optimization results indicate that the proposed optimization method better protects the organs at risk and rapidly reduces the objective function value by ensuring a similar dose distribution to the planning target volume. Compared to the contrasting methods, the normal tissue complication probability obtained by the proposed optimization method decreased by up to 4.61%, and the optimization time of the proposed method decreased by 5.26% on average for ten cancer cases. The effectiveness and acceleration of the proposed method were verified through comparative experiments. According to the comparative experiments, the results indicate that the proposed optimization method is more suitable for clinical applications. It is feasible for the aperture shape optimization involving the proposed method.
Aperture shapeColumn generationConjugate gradientGradient modulationDirect aperture optimization
D.M. Shepard, M.A. Earl, X.A. Li et al., Direct aperture optimization: a turnkey solution for step-and-shoot IMRT. Med. Phys. 29, 1007-1018 (2002). doi: 10.1118/1.1477415http://doi.org/10.1118/1.1477415
Y.J. Li, J. Yao, D.Z. Yao, Genetic algorithm based deliverable segments optimization for static intensity-modulated radiotherapy. Phys. Med. Biol. 48, 3353-3374 (2003). doi: 10.1088/0031-9155/48/20/007http://doi.org/10.1088/0031-9155/48/20/007
M.A. Earl, M.K.N. Afghan, C.X. Yu et al., Jaws-only IMRT using direct aperture optimization. Med. Phys. 34, 307-314 (2007). doi: 10.1118/1.2403966http://doi.org/10.1118/1.2403966
B. Hårdemark, A. Liander, H. Rehbinder et al., Direct machine parameter optimization with ray machine in pinnacle. Raysearch Lab, Sweden, White Pape (2003).
H.E. Romeijn, R.K. Ahuja, J.F. Dempsey et al., A column generation approach to radiation therapy treatment planning using aperture modulation. SIAM J. Optimiz. 15, 838-862 (2005). doi: 10.1137/040606612http://doi.org/10.1137/040606612
F. Preciado-Walters, M.P. Langer, R.L. Rardin et al., Column generation for IMRT cancer therapy optimization with implementable segments. Ann. Oper. Res. 148, 65-79 (2006). doi: 10.1007/s10479-006-0080-1http://doi.org/10.1007/s10479-006-0080-1
Z.F. Dai, T.Y. Li, M. Yang, Forecasting stock return volatility: The role of shrinkage approaches in a data-rich environment. Journal of Forecasting 41, 980-996 (2022). doi: 10.1002/for.2841http://doi.org/10.1002/for.2841
Z.F. Dai, H.Y. Zhu, Dynamic risk spillover among crude oil, economic policy uncertainty and Chinese financial sectors. Int. Rev. Econ. Financ. 83, 421-450 (2023). doi: 10.1016/j.iref.2022.09.005http://doi.org/10.1016/j.iref.2022.09.005
Z.F. Dai, X.T. Zhang, Climate policy uncertainty and risks taken by the bank: Evidence from China. Int. Rev. Financ. Anal. 87, 102579 (2023). doi: 10.1016/j.irfa.2023.102579http://doi.org/10.1016/j.irfa.2023.102579
R. Cao, X. Pei, H. Zheng et al., Direct aperture optimization based on genetic algorithm and conjugate gradient in intensity modulated radiation therapy. Chinese Med. J 127, 4152-4153 (2014). doi: 10.3760/cma.j.issn.0366-6999.20130644http://doi.org/10.3760/cma.j.issn.0366-6999.20130644
F. Carlsson, A. Forsgren, On column generation approaches for approximate solutions of quadratic programs in intensity-modulated radiation therapy. Ann. Oper. Res. 223, 471-481 (2014). doi: 10.1007/s10479-013-1360-1http://doi.org/10.1007/s10479-013-1360-1
R.H. Byrd, P. Lu, J. Nocedal et al., A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16, 1190-1208 (1995). doi: 10.1137/0916069http://doi.org/10.1137/0916069
C. Zhu, R.H. Byrd, P. Lu et al., Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM T. Math. Software 23, 550-560 (1997). doi: 10.1145/279232.279236http://doi.org/10.1145/279232.279236
J.L. Morales, J. Nocedal, Remark on "Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization". ACM Transactions on Mathematical Software, 38, 1-4 (2011). doi: 10.1145/2049662.2049669http://doi.org/10.1145/2049662.2049669
M.R. Hestenes, E.L. Stiefel, Methods of Conjugate Gradients for Solving Linear Systems. Journal of Research, National Bureau of Standards 49, 409-436 (1952). doi: 10.6028/jres.049.044http://doi.org/10.6028/jres.049.044
R. Fletcher, C. M. Reeves, Function minimization by conjugate gradients. The Computer Journal 7, 149-154 (1964). doi: 10.1093/comjnl/7.2.149http://doi.org/10.1093/comjnl/7.2.149
E. Polak, G. Ribiere, Note surla convergence des methodes de directions conjuguees. Rev Francaise Informat Recherche Opertionelle 3, 35-43 (1969). doi: 10.1051/m2an/196903r100351http://doi.org/10.1051/m2an/196903r100351
B.T. Polyak, The conjugate gradient method in extreme problems. USSR Computational Mathematics and Mathematical Physics 9, 94-112 (1969). doi: 10.1016/0041-5553(69)90035-4http://doi.org/10.1016/0041-5553(69)90035-4
Y.H. Dai, Y. Yuan, A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property. SIAM J. Optimiz. 10, 177-182 (1999). doi: 10.1137/S1052623497318992http://doi.org/10.1137/S1052623497318992
R. Fletcher, in Practical Methods of Optimization. Unconstrained Optimization, Vol. 1 (John Wiley & Sons Press, New York, 1987).
Y. Liu, C. Storey, Efficient generalized conjugate gradient algorithms, Part 1: Theory. J. Optimiz. Theory App. 69, 129-137 (1991). doi: 10.1007/bf00940464http://doi.org/10.1007/bf00940464
W. Hager, H. Zhang, A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2, 35-58 (2006).
L. Zhang, W. Zhou, D. Li, A descent modified Polak-Ribiere-Polyak conjugate gradient method and its global convergence. IMA J. Numer. Anal. 26, 629-640 (2006). doi: 10.1093/imanum/drl016http://doi.org/10.1093/imanum/drl016
M. Li, H. Liu, Z. Liu, A new family of conjugate gradient methods for unconstrained optimization. J. Appl. Math. Comput. 58, 219-234 (2018). doi: 10.1007/s12190-017-1141-0http://doi.org/10.1007/s12190-017-1141-0
P. Mtagulwa, P. Kaelo, An efficient modified PRP-FR hybrid conjugate gradient method for solving unconstrained optimization problems. Appl. Numer. Math. 145, 111-120 (2019). doi: 10.1016/j.apnum.2019.06.003http://doi.org/10.1016/j.apnum.2019.06.003
A. Ahnesjö, M. Saxner, A. Trepp, A pencil beam model for photon dose calculation. Med. Phys. 19, 263-273 (1992). doi: 10.1118/1.596856http://doi.org/10.1118/1.596856
J. O. Deasy, A. I. Blanco, V. H. Clark, CERR: a computational environment for radiotherapy research. Med. Phys. 30, 979-985 (2003). doi: 10.1118/1.1568978http://doi.org/10.1118/1.1568978
G. Mu, E. Ludlum, P. Xia, Impact of MLC leaf position errors on simple and complex IMRT plans for head and neck cancer. Phys. Med. Biol. 53, 77-88 (2008). doi: 10.1088/0031-9155/53/1/005http://doi.org/10.1088/0031-9155/53/1/005
Q. Wu, R. Mohan, Algorithms and functionality of an intensity modulated radiotherapy optimization system. Med. Phys. 27, 701-711 (2000). doi: 10.1118/1.598932http://doi.org/10.1118/1.598932
M.L. Kessler, D.L. Mcshan, M.A. Epelman et al., Costlets: A generalized approach to cost functions for automated optimization of IMRT treatment plans. Optim. Eng. 6, 421-448 (2005). doi: 10.1007/s11081-005-2066-2http://doi.org/10.1007/s11081-005-2066-2
L.B. Marks, E.D. Yorke, A. Jackson et al., Use of normal tissue complication probability models in the clinics. Int. J. Radiat. Oncol. 76, S10-S19 (2010). doi: 10.1016/j.ijrobp.2009.07.1754http://doi.org/10.1016/j.ijrobp.2009.07.1754
A. Eisbruch, R.K. Ten Haken, H. M. Kim et al., Dose, volume, and function relationships in parotid salivary glands following conformal and intensity-modulated irradiation of head and neck cancer. Int. J. Radiat. Oncol. 45, 577-587 (1999). doi: 10.1016/S0360-3016(99)00247-3http://doi.org/10.1016/S0360-3016(99)00247-3
C. Burman, G. J. Kutcher, B. Emami et al., Fitting of normal tissue tolerance data to an analytic function. Int. J. Radiat. Oncol. 21, 123-135 (1991). doi: 10.1016/0360-3016(91)90172-Zhttp://doi.org/10.1016/0360-3016(91)90172-Z
E. Dale, T.P. Hellebust, A. Skjønsberg et al., Modeling normal tissue complication probability from repetitive computed tomography scans during fractionated high-dose-rate brachytherapy and external beam radiotherapy of the uterine cervix. Int. J. Radiat. Oncol. 47, 963-971 (2000). doi: 10.1016/S0360-3016(00)00510-1http://doi.org/10.1016/S0360-3016(00)00510-1
S.T.H. Peeters, M.S. Hoogeman, W.D. Heemsbergen et al., Rectal bleeding, fecal incontinence, and high stool frequency after conformal radiotherapy for prostate cancer: Normal tissue complication probability modeling. Int. J. Radiat. Oncol. 66, 11-19 (2006). doi: 10.1016/j.ijrobp.2006.03.034http://doi.org/10.1016/j.ijrobp.2006.03.034
A. van’t Riet, A.C. Mak, M.A. Moerland, et al., A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation: Application to the prostate. Int. J. Radiat. Oncol. 37, 731-736 (1997). doi: 10.1016/S0360-3016(96)00601-3http://doi.org/10.1016/S0360-3016(96)00601-3
N. Hodapp, The ICRU report 83: prescribing, recording and reporting photon-beam intensity-modulated radiation therapy (IMRT). Strahlenther Onkol. 188, 97-99 (2012). doi: 10.1007/s00066-011-0015-xhttp://doi.org/10.1007/s00066-011-0015-x
Y. Luo, S.C. Huang, H. Zhang et al., Assessment of the induced radioactivity in the treatment room of the heavy-ion medical machine in Wuwei using PHITS. Nucl. Sci. Tech. 34, 29 (2023). doi: 10.1007/s41365-023-01181-8http://doi.org/10.1007/s41365-023-01181-8
Y.Q. Yang, W.C. Fang, X.X. Huang et al., Static superconducting gantry-based proton CT combined with X-ray CT as prior image for FLASH proton therapy. Nucl. Sci. Tech. 34, 11 (2023). doi: 10.1007/s41365-022-01163-2http://doi.org/10.1007/s41365-022-01163-2
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution