Chunhai LU, Shijun NI, Wenkai CHEN, et al. Influence on electron energy loss spectroscopy of the niobium-substituted uranium atom: A density functional theory study. [J]. Nuclear Science and Techniques 19(6):365-369(2008)
DOI:
Chunhai LU, Shijun NI, Wenkai CHEN, et al. Influence on electron energy loss spectroscopy of the niobium-substituted uranium atom: A density functional theory study. [J]. Nuclear Science and Techniques 19(6):365-369(2008) DOI: 10.1016/S1001-8042(09)60020-8.
Influence on electron energy loss spectroscopy of the niobium-substituted uranium atom: A density functional theory study
We present the electronic structure and electron energy loss spectroscopy (EELS) for uranium, niobium and U,3,Nb in which uranium is substituted by niobium. Comparing the electronic structures and optical properties for uranium, niobium and U,3,Nb, we found that when niobium atom replaces uranium atom in the center lattice, density of state (DOS) of U,3,Nb shifts downward to low energy. Niobium affects DOS for ,f, and ,d, electrons more than that for ,p, and ,s, electrons. U,3,Nb is similar to uranium for the electronic energy loss spectra.
关键词
Keywords
UraniumNiobiumElectron energy loss spectroscopyElectronic structureLocal density approximation
references
HUO X D, XIE Z S. Nucl Sci Tech. 2004, 6(3): 183-187.
Massalski T B, Murray J L, Bennett L H, et al. Binary alloy phase diagrams. Volume 2. Materials Park, OH: ASM International; 1990.
Brown DW, Bourke M A M, Field R D, et al. Mat Sci Eng A. 2006, 421: 15-21.
Allen L J, Findlay S D, Lupini A R, et al. Phys Rev Lett. 2003, 81: 105503.
Buck E C, Finn P A, Bates J K. Micron. 2004, 35: 235-243.
Buck E C, Fortner J A. Ultramicroscopy. 1997, 67: 69-75.
Dudarev S L, Castell M R, Botton G A, et al. Micron. 2000, 31: 363-372.
Divis M, Olsovec M, Richter M, et al. J Magn Magn Mat. 1995, 140-144(pt 2): 1365-1366.
Divis M, Richter M, Eschrig H. Solid State Commun. 1994, 90(2): 99-103.
Divis M, Steinbeck L, Richter M, et al. J Alloy Compd. 2001, 321(1): 10-16.
Matar S F. J Magn Magn Mat. 1995, 151(1-2): 263-272.
Matar S F, Eyert V. J Magn Magn Mat. 1997, 166(3): 321-328.
Matar S F, Eyert V, Mavromaras A, et al. J Magn Magn Mat. 1997, 174(3): 219-235.
Matar S F, Etourneau J. J Alloy Compd. 1998, 275-277: 468-471.
Matar S F, Siruguri V, Eyert V. J Magn Magn Mat. 2006, 305(1): 264-268.
Matar S F, Siruguri V. J Alloy Compd. 2007, 436(1-2): 34-37.
Nourbakhsh Z, Pourghazi A. First principles calculation of electric and magnetic properties of UIn3 intermetalic compound. Agadir, Morocco: Wiley-VCH Verlag, Weinheim, Germany, 2006:3292-3296.
Rusz J, Divis M. J Phys-Condens Mat. 2004, 16(37): 6675-6684.
Rusz J, Divis M. J Magn Magn Mat. 2005, 290-291 Part 1: 367-370.
LU Lei. Study of electron energy loss spectroscopy of surface oxidation behavior of uranium-niobium alloy. [D].Mianyang: China Academy of Engineering Physics, 2003.
Segall M D, Lindan P J D, Probert M J, et al. J Phys-Cond Mat. 2002, 14(11): 2717-2743.
Ceperley D M, Alder B J. Phys Rev Lett. 1980, 45: 566-569.
Sun S R, Dong Y H. Solid State Commun. 2006, 138: 476-479.
FANG Rongchuan. Optic properties of solid. Hefei: University of Science and Technology of China Press, 2003.
Static and dynamic evolution of CO adsorption on γ-U (1 0 0) surface with different levels of Mo doping using DFT and AIMD calculations
Isothermal, kinetic and thermodynamic studies for solid-phase extraction of uranium (VI) via hydrazine-impregnated carbon-based material as efficient adsorbent
Preparation of amidoxime-based PE/PP fibers for extraction of uranium from aqueous solution
Sorption of uranium (VI) from aqueous solutions by DEEA organo-volcanic: Isotherms, kinetics and thermodynamic studies
The AMS measurement of 236U at CIRCE
Related Author
No data
Related Institution
Key Laboratory of Beam Technology (MOE), College of Nuclear Science and Technology, Beijing Normal University
Xi’an Research Institute of High-Technology
Key Lab of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University