1.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai201800, China
2.Graduate University of Chinese Academy of Sciences, Beijing100049, China
Corresponding author, xiaxiaobin@sinap.ac.cn
Scan for full text
Jun CAI, Xiao-Bin XIA, Kun CHEN, et al. Analysis on reacivity initiated transient from control rod failure events of a molten salt reactor. [J]. Nuclear Science and Techniques 25(3):030602(2014)
Jun CAI, Xiao-Bin XIA, Kun CHEN, et al. Analysis on reacivity initiated transient from control rod failure events of a molten salt reactor. [J]. Nuclear Science and Techniques 25(3):030602(2014) DOI: 10.13538/j.1001-8042/nst.25.030602.
In a molten salt reactor (MSR), the fuel is dissolved in fluoride salt. In this paper, the reactivity worth and reactivity initiated transient of Molten-Salt Reactor Experiment (MSRE) in the control rod failure events are analyzed. The point kinetic coupling heat-transfer model with decay character of six-group delayed neutron precursors due to the fuel motion is applied. The relative power and temperature transient under reactivity step and ramp initiated at different power levels are studied. The results show that the reactor power and temperature increase to a maximum, where they begin to decrease to stable values. Comparing with full power level, the transient result at low power level is more serious. The results are of help in our study on safety characteristics of an MSR system.
Reactivity initiated transientFluid fuelMolten-salt reactor experiment
Rosenthal M W, Kasten P R, Briggs R B. Nuclear Appl Technol, 1970, 8: 107-117.
Roy C R, ORNL-4541, USA: ORNL, 1971.
GIF-002-00, USA: DOE, 2002.
Vergnes J and Lecarpentier D. Nucl Eng Des, 2002, 216: 43-67
Furukawa K, Arakawa K, Erbay L B, et al. Energ Convers Manage, 2008, 49: 1832-1848.
Ignatiev V, Feynberg O, Gnidoi I, et al. Proceedings of the ICAPP, Nice, France, May 13–18, 2007, 7548.
Delpech S, Lucotte E M, Auger T, et al. Paris, France, 9–10 September 2009, 201.
Jiang M H, Xu H J, Dai Z M. Bulletin of Chinese Academy of Sciences, 2012, 03: 366-374. (In Chinese)
Haubenreich P N and Ehgel J R. ORNL-TM-0251, USA: ORNL, 1962.
Shimazu Y. J Nucl Sci Technol, 1978, 15: 514-522.
Zhang D L, Qiu S Z, Su G H, et al. Nucl Eng Des, 2008, 45: 575-581.
IAEA Safety Standards, No. NS-R-4, 2005.
Haubenreich P N and Ehgel J R. Nucl Appl Technol, 1970, 8: 118-137.
Haubenreich P N, Engle J R, Prince B E. ORNL-TM-0730, USA: ORNL, 1964.
Prince B E, Ball S J, Engel J R, et al. ORNL-4233, USA: ORNL, 1968.
Haubenreich P N. ORNL-TM-038, USA: ORNL,1962.
Shampine L F and Thompson S. Appl Numer Math, 2001, 37: 441-458.
Delpech M, Dulla S, Garzenne C, et al. Proceedings of the international conference GLOBAL, 2003, 2182-2187.
Auwerda G J. Skripsi. TU Delft, Delft, 2007.
Haynes International, Inc. HASTELLOY®N alloy[bR], USA, http://www.haynesintl.com/pdf/h2052.pdfhttp://www.haynesintl.com/pdf/h2052.pdf, 2002.
0
Views
2
Downloads
5
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution