1.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai Synchrotron Radiation Facility, Shanghai 201800, China
Corresponding author, wuyanqing@sinap.ac.cn
Corresponding author, tairenzhong@sinap.ac.cn
Scan for full text
Shu-Min YANG, Lian-Sheng WANG, Jun ZHAO, et al. Developments at SSRF in soft X-ray interference lithography. [J]. Nuclear Science and Techniques 26(1):010101(2015)
Shu-Min YANG, Lian-Sheng WANG, Jun ZHAO, et al. Developments at SSRF in soft X-ray interference lithography. [J]. Nuclear Science and Techniques 26(1):010101(2015) DOI: 10.13538/j.1001-8042/nst.26.010101.
The soft X-ray interference lithography (XIL) branch beamline at Shanghai Synchrotron Radiation Facility (SSRF) is briefly introduced in this article. It is designed for obtaining 1D (line/space) and 2D (dot/hole) periodic nanostructures by using two or more coherent extreme ultraviolet (EUV) beams from an undulator source. A transmission-diffraction-grating type of interferometer is used at the end station. Initial results reveal high performance of the beamline, with 50 nm half-pitch 1D and 2D patterns from a single exposure area of 400 μm×400 μm. XIL is used in a growing number of areas, such as EUV resist test, surface enhanced Raman scattering (SERS) and color filter plasmonic devices. By using highly coherent EUV beam, broadband coherent diffractive imaging can be performed on the XIL beamline. Well reconstructed pinhole of ,ϕ,20 μm has been realized.
Extreme ultravioletSoft x-ray interference lithographyPeriodic nanostructuresGratingHalf-pitch
A Tavakkoli, S N Piramanayagam, M Ranjbar, et al. Path to achieve sub-10-nm half-pitch using electron beam lithography. J Vac Sci Technol B, 2011, 29: 011035. DOI: 10.1116/1.3532938http://doi.org/10.1116/1.3532938
L J Guo. Nanoimprint lithography: Methods and material requirements. Adv Mater, 2007, 19: 495-513. DOI: 10.1002/adma.200600882http://doi.org/10.1002/adma.200600882
V Sidorkin, E Veldhoven, E Drift, et al. Sub-10-nm nanolithography with a scanning helium beam. J Vac Sci Technol B, 2009, 27: L18-20. DOI: 10.1116/1.3182742http://doi.org/10.1116/1.3182742
S R J Brueck. Optical and interferometric lithography - nanotechnology enablers. Proc IEEE, 2005, 93:1704-1721. DOI: 10.1109/JPROC.2005.853538http://doi.org/10.1109/JPROC.2005.853538
C Q Xie, X. L Zhu, J B Niu, et al. Micro- and nano-metal structures fabrication technology and applications. Acta Opt Sinica, 2011, 31: 0900128. (in Chinese) DOI: 10.3788/AOS201131.0900128http://doi.org/10.3788/AOS201131.0900128
T A Savas, M L Schattenburg, J M Carter, et al. Large-area achromatic interferometric lithography for 100 nm period gratings and grids. J Vac Sci Technol B, 1996, 14: 4167-4170. DOI: 10.1116/1.588613http://doi.org/10.1116/1.588613
H H Solak. Nanolithography with coherent extreme ultraviolet light. J Phys D, 2006, 39: R171. DOI: 10.1088/0022-3727/39/10/R01http://doi.org/10.1088/0022-3727/39/10/R01
D Attwood, K Halbach and K J Kim. Tunable coherent X-rays. Science, 1985, 228: 1265. DOI: 10.1126/science.228.4705.1265http://doi.org/10.1126/science.228.4705.1265
Y Ekinci, M Vockenhuber, M Hojeij, et al. Evaluation of EUV resist performance with interference lithography towards 11 nm half-pitch and beyond. Proc SPIE, 2013, 8679: 867910-11. DOI: 10.1117/12.2011533http://doi.org/10.1117/12.2011533
H Shiotani, S Suzuki, D G Lee, et al. Dual grating interferometric lithography for 22-nm node. Jpn J Appl Phys, 2008, 47: 4881-4885. DOI: 10.1143/JJAP.47.4881http://doi.org/10.1143/JJAP.47.4881
A Isoyan, A Wüest, J Wallace, et al. 4X reduction extreme ultraviolet interferometric lithography. Opt Express, 2008, 16: 9106-9111. DOI: 10.1364/OE.16.009106http://doi.org/10.1364/OE.16.009106
C H Lin, C H Fong, Y M Lin, et al. EUV interferometric lithography and structural characterization of an EUV diffraction grating with nondestructive spectroscopic ellipsometry. Microelectron Eng, 2011, 88: 2639-2643. DOI: 10.1016/j.mee.2011.02.002http://doi.org/10.1016/j.mee.2011.02.002
C F Xue, Y Wang, Z Guo, et al. High-performance soft x-ray spectromicroscopy beamline at SSRF. Rev Sci Instrum, 2010, 81: 103502-103505. DOI: 10.1063/1.3491837http://doi.org/10.1063/1.3491837
W B Q and K Ajay. Extreme ultraviolet lithography: A review. J Vac Sci Technol B, 2007, 25: 1743-1761. DOI: 10.1116/1.2794048http://doi.org/10.1116/1.2794048
H H Solak, C David, J Gobrecht, et al. Sub-50 nm period patterns with EUV interference lithography. Microelectron Eng, 2003, 67-68: 56-62. DOI: 10.1016/S0167-9317(03)00059-5http://doi.org/10.1016/S0167-9317(03)00059-5
H H Solak. Space-invariant multiple-beam achromatic EUV interference lithography. Microelectron Eng, 2005, 78-79: 410-416. DOI: 10.1016/j.mee.2005.01.012http://doi.org/10.1016/j.mee.2005.01.012
H H Solak, C David, J Gobrecht, et al. Multiple-beam interference lithography with electron beam written gratings. J Vac Sci Technol B, 2002, 20: 2844-2848. DOI: 10.1116/1.1518015http://doi.org/10.1116/1.1518015
Y Fukushima, N Sakagami, T Kimura, et al. Development of extreme ultraviolet interference lithography system. Jpn J Appl Phys, 2010, 49: 06GD06. DOI: 10.1143/JJAP.49.06GD06http://doi.org/10.1143/JJAP.49.06GD06
W Z Zhu, Y Q Wu, M Chen, et al. Optimized design of transmission grating used for 13.4 nm soft X-ray interference lithography. Acta Opt Sinica, 2008, 28: 1225-1230. (in Chinese) DOI: 10.3788/AOS20082807.1225http://doi.org/10.3788/AOS20082807.1225
W Z Zhu, Y Q Wu, Z Guo, et al. The design, fabrication and performance of a large area 10000 line/mm metal transmission diffraction gratingsfor soft X-ray. Acta Phys Sinica, 2008, 57: 6386-6392. (in Chinese) DOI: 10.7498/aps.57.6386http://doi.org/10.7498/aps.57.6386
L Chen, J Xu, H Yuan, et al. Outgassing analysis of molecular glass photoresists under EUV irradiation. Sci China Chem, 2014, 57: 1746-1750. DOI: 10.1007/s11426-014-5122-yhttp://doi.org/10.1007/s11426-014-5122-y
G O’Sullivan, D Kilbane, R D’Arcy. Recent progress in source development for extreme UV lithography. J Mod Opt, 2012, 59: 855-872. DOI: 10.1080/09500340.2012.678399http://doi.org/10.1080/09500340.2012.678399
H Kinoshita, T Watanabe, T Harada, et al. Recent Activities on Extreme Ultraviolet Lithography in NewSUBARU. Jpn J Appl Phys, 2013, 52: 06GA01. DOI: 10.7567/JJAP.52.06GA01http://doi.org/10.7567/JJAP.52.06GA01
P P Zhang, S M Yang, L S Wang, et al. Large-scale uniform Au nanodisk arrays fabricated via x-ray interference lithography for reproducible and sensitive SERS substrate. Nanotechnology, 2014, 25: 245301. DOI: 10.1088/0957-4484/25/24/245301http://doi.org/10.1088/0957-4484/25/24/245301
H N Chapman, K A Nugent. Coherent lensless X-ray imaging. Nat Photonics, 2010, 4: 833-839. DOI: 10.1038/nphoton.2010.240http://doi.org/10.1038/nphoton.2010.240
B Abbey, L W Whitehead, H M Quiney, et al. Lensless imaging using broadband X-ray sources. Nat Photonics, 2011, 5: 420-424. DOI: 10.1038/nphoton.2011.125http://doi.org/10.1038/nphoton.2011.125
J Kirz, C Jacobsen and M Howells. Soft X-ray microscopes and their biological applications. Q Rev Biophys, 1995, 28: 33-130. DOI: 10.1017/S0033583500003139http://doi.org/10.1017/S0033583500003139
0
Views
3
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution