Zhao-Hong ZHANG, Zheng JIANG, Song XUE, et al. Time structure measurement of the SSRF storage ring using TRXEOL method. [J]. Nuclear Science and Techniques 26(4):040202(2015)
DOI:
Zhao-Hong ZHANG, Zheng JIANG, Song XUE, et al. Time structure measurement of the SSRF storage ring using TRXEOL method. [J]. Nuclear Science and Techniques 26(4):040202(2015) DOI: 10.13538/j.1001-8042/nst.26.040202.
Time structure measurement of the SSRF storage ring using TRXEOL method
In order to do alignment between the timing signal and the synchrotron X-ray pulse on the sample spot in the time domain, measuring time structure of the storage ring on the sample spot inside the experimental hutch is a foundational step during the time-resolved experiments using the pulsed synchrotron X-rays with the time structure defined by the storage ring. In this work, the method of time-resolved X-ray excited optical luminescence (TRXEOL) was designed and implemented to do the measurement. It is based on the principle of time-correlated single photon counting techniques. The measurement system consists of a spectrometer with a detector of photomultiplier tube, a timing system, a set of nuclear instrument modules and a luminescent material of zinc oxide. The measurement was performed on the X-ray absorbed fine structure spectrum beamline at Shanghai Synchrotron Radiation Facility. The results show that this method can be used to measure the time structure of the storage ring with a precision of less than 1 ns. The measurement system can also be used for the time-resolved research for the optical luminescent materials.
关键词
Keywords
Synchrotron ring time structureX-ray excited optical luminescenceTime-resolved X-ray excited optical luminescenceShanghai Synchrotron Radiation Facility
references
S Q Tian, B C Jiang, Y B Leng, et al. Double-mini-βy optics design in the SSRF storage ring. Nucl Sci Tech, 2014, 25: 030101. DOI: 10.13538/j.1001-8042/nst.25.030101http://doi.org/10.13538/j.1001-8042/nst.25.030101
C J Milne, T J Penfold and M Chergui. Recent experimental and theoretical developments in time-resolved X-ray spectroscopies. Coordin Chem Rev, 2014, 277: 44-68. DOI: 10.1016/j.ccr.2014.02.013http://doi.org/10.1016/j.ccr.2014.02.013
P Beiersdorfer, J K Lepson, M Bitter, et al. Time-resolved x-ray and extreme ultraviolate spectrometer for use on the National Spherical Torus Experiment. Rev Sci Instrum, 2008, 79: 10E318. DOI: 10.1063/1.2953488http://doi.org/10.1063/1.2953488
S Herrmann, P Hart, M Freytag, et al. Diode readout electronics for beam intensity and position monitors for FELs. J Phys Conf Ser, 2014, 493: 012014. DOI: 10.1088/1742-6596/493/1/012014http://doi.org/10.1088/1742-6596/493/1/012014
C Y Dong, P T So, T French, et al. Fluorescence lifetime imaging by asynchronous pump-probe microscopy. Biophys J, 1995, 69: 2234-2242. DOI: 10.1016/S0006-3495(95)80148-7http://doi.org/10.1016/S0006-3495(95)80148-7
Y Q Lu, J B Zhao, R Zhang, et al. Tunable lifetime multiplexing using luminescent nanocrystals. Nat Photonics, 2014, 8: 32-36. DOI: 10.1038/NPHOTON.2013.322http://doi.org/10.1038/NPHOTON.2013.322
T Reusch, M Osterhoff, J Agricola, et al. Pulse-resolved multi-photon X-ray detection at 31 MHz based on a quadrant avalanche photodiode. J Synchrotron Rad, 2014, 21: 708-715. DOI: 10.1107/S1600577514006730http://doi.org/10.1107/S1600577514006730
T K Sham and R A Rosenberg. Time-resolved synchrotron radiation excited optical luminescence: Light-emission properties of silicon-based nanostructures. ChemPhysChem, 2007, 8: 2557-2567. DOI: 10.1002/cphc.200700226http://doi.org/10.1002/cphc.200700226
M Liu, C X Yin, L Y Zhao, et al. Design of a novel timing system. Nucl Tech, 2010, 33: 425-428. (in Chinese)
W Becker. Advanced time-correlated single photon counting techniques. Springer Berlin Heidelberg, 2005. DOI: 10.1007/3-540-28882-1http://doi.org/10.1007/3-540-28882-1
X H Zhang, S J Chua, A M Yong, et al. Exciton radiative lifetime in ZnO quantum dots embedded in SiO_x matrix. Appl Phys Lett, 2006, 88: 221903. DOI: 10.1063/1.2207848http://doi.org/10.1063/1.2207848
Q Xu, R D Hong, H L Huang, et al. Enhanced band-gap emission in ZnO Nanocaves by two-step thermal oxidation Zn film. Mater Lett, 2013, 91: 139-141. DOI: 10.1016/j.matlet.2012.09.042http://doi.org/10.1016/j.matlet.2012.09.042
H Liu, Y Zhou, Z Jiang, et al. QXAFS system of the BL14W1 XAFS beamline at the Shanghai Synchrotron Radiation Facility. J Synchrotron Rad, 2012, 19: 969-975. DOI: 10.1107/S0909049512038873http://doi.org/10.1107/S0909049512038873
D R Vij. Luminescence of Solids. Springer US, 1998. DOI: 10.1007/978-1-4615-5361-8http://doi.org/10.1007/978-1-4615-5361-8
J F W Mosselmans, R P Taylor, P D Quinn, et al. A time resolved microfocus XEOL facility at the Diamond Light Source. J Phys Conf Ser, 2013, 425: 182009. DOI: 10.1088/1742-6596/425/18/182009http://doi.org/10.1088/1742-6596/425/18/182009
S R Das and L E Holloway. Characterizing discrete event timing relationships for fault monitoring of manufacturing systems. IEEE Intl Conf Contr, 1996, 1012-1018. DOI: 10.1109/CCA.1996.559054http://doi.org/10.1109/CCA.1996.559054
J Vogel, W Kuch, M Bonfim, et al. Time-resolved magnetic domain imaging by X-ray photoemission electron microscopy. Appl Phys Lett, 2003, 82: 2299-2301. DOI: 10.1063/1.1564876http://doi.org/10.1063/1.1564876
L Y Zhao, C X Yin and D K Liu. Application of event system in SSRF timing system. Nucl Tech, 2006, 29: 1-5. (in Chinese) DOI: 10.3321/j.issn:0253-3219.2006.01.001http://doi.org/10.3321/j.issn:0253-3219.2006.01.001
H Ego, M Hara, Y Kawashima, et al. Suppression of the coupled-bunch instability in the SPring-8 storage ring. AIP Conf Proc, 1997, 413: 267-275. DOI: 10.1063/1.54408http://doi.org/10.1063/1.54408