The BL14W1 beamline at Shanghai Synchrotron Radiation Facility (SSRF) is an X-ray absorption fine-structure (XAFS) beamline, for investigating atomic local structure, which is demanded extensively in the fields of physics, chemistry, materials science, environmental science and so on. The beamline is based on a 38-pole wiggler with the maximum magnetic field of 1.2 T. X-rays of 4.5–40 keV can be extracted by the optical scheme consisting of white beam vertical collimating mirror, liquid-nitrogen-cooled double crystal monochromator of Si(111) and Si(311), toroidal focusing mirror and higher harmonics rejection mirror. The maximum photon flux about 5×10,12, photons/s at the sample at 10 keV, with a beam size of 0.3 mm×0.3 mm. The beamline is equipped with four types of detectors for experiments in either transmission or fluorescence mode. At present, quick-XAFS, grazing incidence XAFS, X-ray emission spectroscopy, high-pressure XAFS and time-resolved X-ray excited optical luminescence methods have been developed.
关键词
Keywords
Shanghai Synchrotron Radiation FacilityX-ray absorption fine structureBL14W1
references
K Diek, M Barbara, M Jeff, et al. XAFS spectroscopy in catalysis research: AXAFS and shape resonances. J Synchrotron Rad, 1999, 6: 135-141. DOI: 10.1107/S0909049599002010http://doi.org/10.1107/S0909049599002010
H J Xu and Z T Zhao. Current status and progresses of SSRF project. Nucl Sci Tech, 2008, 19: 1-6. DOI: 10.1016/S1001-8042(08)60013-5http://doi.org/10.1016/S1001-8042(08)60013-5
F Qiang, X L Wei, H B Xin, et al. Interface-Confined Ferrous Centers for Catalytic Oxidation. Science, 2010, 328: 1141-1144. DOI: 10.1126/science.1188267http://doi.org/10.1126/science.1188267
G G Xiao, Z F Guang, H B Xin, et al. Direct, Non-oxidative conversion of methane to ethylene, aromatics, and hydrogen. Science, 2014, 344: 616-619. DOI: 10.1126/science.1253150http://doi.org/10.1126/science.1253150
Y Feng, W Xiao, L Yan, et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature, 2014, 510: 522-524. DOI: 10.1038/nature13434http://doi.org/10.1038/nature13434
L Yang,G Q Guo and J Z Jiang. Atomic-scale mechanisms of the glass-forming ability in metallic glasses. Phys Rev Lett, 2012, 109: 1-5. DOI: 10.1103/PhysRevLett.109.105502http://doi.org/10.1103/PhysRevLett.109.105502
T M Ren, F Qiang, X Hong, et al. Synergetic effect of surface and subsurface Ni species at Pt-Ni bimetallic catalysts for Co oxidation. J Am Chem Soc, 2011, 133: 1978-1986. DOI: 10.1021/ja109483ahttp://doi.org/10.1021/ja109483a
T Q Bo, Q W Ai and Z Tao. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature Chem, 2011, 3: 634-641. DOI: 10.1038/NCHEM.1095http://doi.org/10.1038/NCHEM.1095
W Fei, Q W Jian, Y X Yong, et al. Graphite intercalation compounds (GICs): A new type of promising anode material for lithium-ion batteries. Adv Energ Mat, 2014, 4: 5866-5874. DOI: 10.1002/aenm.201300600http://doi.org/10.1002/aenm.201300600
B Z Chang, D L Fu, H Hong, et al. Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures. Angew Chem Int Edit, 2012, 51: 9628-9632. DOI: 10.1002/anie.201202034http://doi.org/10.1002/anie.201202034
Y Gao, D Ma, G Hu, et al. Layered-carbon-stabilized iron oxide nanostructures as oxidation catalysts. Angew Chem Int Edit, 2011, 50:10236-10240. DOI: 10.1002/anie.201101737http://doi.org/10.1002/anie.201101737
L Heng, Q G Song, J Zheng, et al. QXAFS system of the BL14W1 XAFS beamline at the Shanghai Synchrotron Radiation Facility. J Synchrotron Rad, 2012, 19: 969-975. DOI: 10.1107/S0909049512038873http://doi.org/10.1107/S0909049512038873
L Liang,Y H Yu, H H Sheng, et al. Structure of Co-doped Alq3 thin films investigated by grazing incidence X-ray absorption fine structure and fourier transform infrared spectroscopy. J Phys Chem A, 2011, 115: 880-883.DOI: 10.1021/jp109651uhttp://doi.org/10.1021/jp109651u
Y Z Mei, Z H Guang and P Gang. Binding mechanism of arsenate on rutile(110) and (001) planes studied using grazing-incidence EXAFS measurement and DFT calculation. Chemosphere, 2015, 122: 199-205. DOI: 10.1016/j.chemosphere.2014.11.053http://doi.org/10.1016/j.chemosphere.2014.11.053
Y Z Mei, Z H Guang and P Gang. Structure and stability of arsenate adsorbed on α-Al2O3 single-crystal surfaces investigated using grazing-incidence EXAFS measurement and DFT calculation. Chem Geol, 2014, 389: 104-109. DOI: 10.1016/j.chemgeo.2014.10.002http://doi.org/10.1016/j.chemgeo.2014.10.002
Y Li, H Shan, Y J Chuan, et al. Insights from arsenate adsorption on rutile(110): grazing-incidence X-ray absorption fine structure spectroscopy and DFT+U study. J Phys Chem A, 2014, 118: 4759-4765. DOI: 10.1021/jp500097vhttp://doi.org/10.1021/jp500097v
G Xing, J Zheng, Y H Yu, et al. A High resolution X ray fluorescence spectrometer and its application at SSRF. X-Ray Spectrom, 2013, 42: 502-507.DOI: 10.1002/xrs.2511http://doi.org/10.1002/xrs.2511
G Xing, D S Guo and Y Y Huang. Mechanism and microstructure of Eu(III) interaction with γ-MnOOH by a combination of batch and high resolution EXAFS investigation. Sci China Chem, 2013, 56: 1658-1666. DOI: 10.1007/s11426-013-4888-7http://doi.org/10.1007/s11426-013-4888-7
H Z Zhao, Z Jiang, F Z Li, et al. Time structure measurement of the SSRF storage ring using TRXEOL method. Nucl Sci Tech, 2015, 26: 040202.DOI: 10.13538/j.1001-8042/nst.26.040202http://doi.org/10.13538/j.1001-8042/nst.26.040202
T K Sham and R A Rosenberg. Time-resolved synchrotron radiation excited optical luminescence: light-emission properties of silicon-based nanostructures. Chem Phys Chem, 2007, 8: 2557-2567. DOI: 10.1002/cphc.200700226http://doi.org/10.1002/cphc.200700226