Z. Moradipoor, R. Razavi. Single neutron hole entropy in 105Cd and 111Cd. [J]. Nuclear Science and Techniques 26(5):050503(2015)
DOI:
Z. Moradipoor, R. Razavi. Single neutron hole entropy in 105Cd and 111Cd. [J]. Nuclear Science and Techniques 26(5):050503(2015) DOI: 10.13538/j.1001-8042/nst.26.050503.
The nuclear level density and entropy were calculated for ,105,Cd,106,Cd,111,Cd and ,112,Cd based on the Back Shifted Fermi Gas (BSFG) model and the Constant Temperature (CT) model. Then, the entropies were extracted in the microcanonical ensemble according to recent experimental data on nuclear level density measured by the Oslo group for these nuclei and are compared with their corresponding macroscopic calculations. Entropies of the neutron hole were estimated from the entropy difference between the odd-mass and even-even nuclei. The results reveal that the CT model describes better the extracted microcanonical results.
R Razavi. Role of neutrons and protons in entropy, spin cut off parameters, and moments of inertia. Phys Rev C, 2013, 88: 014316. DOI: 10.1103/PhysRevC.88.014316http://doi.org/10.1103/PhysRevC.88.014316
R Razavi, A N Behkami and V Dehghani. Pairing phase transition and thermodynamical quantities in Sm-148,Sm-149. Nucl Phys A, 2014, 930: 57-62. DOI: 10.1016/j.nuclphysa.2014.07.016http://doi.org/10.1016/j.nuclphysa.2014.07.016
R Razavi, A N Behkami, S Mohammadi, et al. Ratio of neutron and proton entropy excess in 121Sn compared to 122Sn. Phys Rev C, 2012, 86: 047303. DOI: 10.1103/PhysRevC.86.047303http://doi.org/10.1103/PhysRevC.86.047303
H A Bethe. An attempt to calculate the number of energy levels of a heavy nucleus. Phys Rev, 1936, 50: 332-341. DOI: 10.1103/PhysRev.50.332http://doi.org/10.1103/PhysRev.50.332
A Gilbert and A G W Cameron. A composite nuclear-level density formula with shell corrections. Can J Phys, 1965, 43: 1446-1496. DOI: 10.1139/p65-139http://doi.org/10.1139/p65-139
H Zheng, G Giuliani and A Bonasera. Density and temperature of fermions and bosons from quantum fluctuations. Nucl Sci Tech, 2013, 24: 050512. DOI: 10.13538/j.1001-8042/nst.2013.05.012http://doi.org/10.13538/j.1001-8042/nst.2013.05.012
C C Guo, J Sun and F S Zhang. Comparison between nuclear thermometers in central Xe+Sn collision. Nucl Sci Tech, 2013, 24: 050513. DOI: 10.13538/j.1001-8042/nst.2013.05.013http://doi.org/10.13538/j.1001-8042/nst.2013.05.013
Y G Ma. Application of information theory in nuclear liquid gas phase transition. Phys Rev Lett, 1999, 83: 3617. DOI: 10.1103/PhysRevLett.83.3617http://doi.org/10.1103/PhysRevLett.83.3617
A C Larsen, I E Ruud, A Bürger, et al. Transitional γ strength in Cd isotopes. Phys Rev C, 2013, 87: 014319. DOI: 10.1103/PhysRevC.87.014319http://doi.org/10.1103/PhysRevC.87.014319
T Ericson. A statistical analysis of excited nuclear states. Nucl Phys, 1959, 11: 481-491. DOI: 10.1016/0029-5582(59)90291-3http://doi.org/10.1016/0029-5582(59)90291-3
R Razavi and T Kakavand. Level studies of 93Mo via 93Nb(P, ng)93Mo reaction and density of discrete levels in 93Mo. Nucl Technol Radiat, 2011, 26: 69-73.DOI: 10.2298/NTRP1101069Rhttp://doi.org/10.2298/NTRP1101069R
W Dilg, W Schantl, H Vonach, et al. Level density parameters for the back-shifted fermi gas model in the mass range 40 A < 250. Nucl Phys A, 1973, 217: 269-298. DOI: 10.1016/0375-9474(73)90196-6http://doi.org/10.1016/0375-9474(73)90196-6
R Razavi, A N Behkami and S Mohammadi. Microscopic study of nuclear level densities and thermodynamical properties in ^170,171,172Yb. Phys Scripta, 2012, 86: 045201. DOI: 10.1088/0031-8949/86/04/045201http://doi.org/10.1088/0031-8949/86/04/045201